carbon redistribution
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Xiaoying Ping ◽  
Yu Chang ◽  
Miao Liu ◽  
Yuanman Hu ◽  
Wentao Huang ◽  
...  

Forest fires are a significant factor that affects the boreal forest carbon distribution which emits carbon into the atmosphere and leads to carbon redistribution among carbon pools. However, knowledge about how much carbon was transferred among pools and the immediate changes in soil nutrient contents in areas that were burned by fires of various severities are still limited. In this study, we surveyed eight wildfire sites that are located in northeast China within three months after the fires occurred. Our results indicate that the total soil nitrogen, phosphorus, and organic carbon contents significantly increased after moderate- and high-severity fires. The carbon emissions were 3.84, 5.14, and 12.86 Mg C/ha for low-, moderate-, and high-severity fires, respectively. The amount of carbon transferred among pools increased with fire severity except for the charcoal pool, storing the highest amounts of carbon in moderate-severity fires. Although the charcoal and ash pools accounted for a small proportion of the total ecosystem, they are important for biogeochemical cycles and are worthy of attention. The carbon redistribution information in our study is important for accurately estimating the forest carbon budget and providing crucial parameters for forest carbon cycling models to incorporate the carbon transfer process.


Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115539
Author(s):  
Julian Campo ◽  
Erik L.H. Cammeraat ◽  
Eugenia Gimeno-García ◽  
Vicente Andreu

2021 ◽  
Author(s):  
Yipeng Liang ◽  
Tonggang Zha ◽  
Xiang Li ◽  
Xiaoxia Zhang

<p><strong>ABSTRACT</strong> </p><p>Redistribution of soil organic carbon (SOC) in response to soil erosion along slopes plays an important role in understanding the mechanisms of SOC’s spatial distribution and turnover. Consequently, SOC redistribution has been considered in many conceptual or mathematical models of soil carbon stability and storage. Vegetation restoration has been identified as an effective method to alleviate soil erosion on the Loess Plateau, however, little research has addressed vegetation restoration’s effect on the SOC redistribution processes, particularly SOC’s spatial distribution and stability. This study quantified the SOC stock and pool distribution on slopes along geomorphic gradients in naturally regenerating forests (NF) and an artificial black locust plantation (BP), and used a corn field as a control (CK). The following results were as follows: (1) Vegetation restoration, particularly NF, slowed the migration of SOC and reduced the heterogeneity of its distribution effectively. The topsoil SOC ratios of the sedimentary area to the stable area were 109%, 143%, and 210% for NF, the BP and CK, respectively; (2) Vegetation restoration decreased the loss of labile organic carbon by alleviating the loss of dissolved organic carbon (DOC) and easily oxidized organic carbon (EOC). The DOC/SOC in the BP and NF increased significantly, and were 13.14 and 17.57 times higher, respectively, than in the CK (p < 0.05), while the EOC/SOC in the BP and NF was slightly higher than in the CK. (3) A relevant schematic diagram of SOC cycle patterns and redistribution along the Loess slope was drawn under vegetation restoration. These results suggest that vegetation restoration in the Loess slope effectively alleviated the redistribution and spatial heterogeneity of SOC through reducing soil erosion. Thus, the effects of vegetation restoration on SOC redistribution should be pay more attention in regional carbon storage estimation, especially in the Loess gully regions.</p><p>Keywords: Vegetation Restoration, Soil Organic Carbon Redistribution, Loess Slope, Soil Erosion, Soil Organic Carbon Stability</p>


2021 ◽  
pp. 1-45
Author(s):  
Richard G. Williams ◽  
Anna Katavouta ◽  
Vassil Roussenov

AbstractProjected changes in ocean heat and carbon storage are assessed in terms of the added and redistributed tracer using a transport-based framework, which is applied to an idealised climate model and a suite of 6 CMIP5 Earth system models following an annual 1% rise in atmospheric CO2. Heat and carbon budgets for the added and redistributed tracer are used to explain opposing regional patterns in the storage of ocean heat and carbon anomalies, such as in the tropics and subpolar North Atlantic, and the relatively-reduced storage within the Southern Ocean. Here the added tracer takes account of the net tracer source and the advection of the added tracer by the circulation, while the redistributed tracer takes account of the time-varying circulation advecting the pre-industrial tracer distribution. The added heat and carbon often have a similar sign to each other with the net source usually acting to supply tracer. In contrast, the redistributed heat and carbon consistently have an opposing sign to each other due to the opposing gradients in the pre-industrial temperature and carbon. These different signs in heat and carbon redistribution can lead to regional asymmetries in the climate-driven changes in ocean heat and carbon storage. For a weakening in the Atlantic overturning and strengthening in the Southern Ocean residual circulation, the high latitudes are expected to have heat anomalies of variable sign and carbon anomalies of a consistently positive sign, since added and redistributed tracers are opposing in sign for heat and the same sign for carbon there.


2021 ◽  
Vol 205 ◽  
pp. 116521
Author(s):  
L. Morsdorf ◽  
E. Emelina ◽  
B. Gault ◽  
M. Herbig ◽  
C.C. Tasan

2021 ◽  
Vol 8 ◽  
Author(s):  
Yipeng Liang ◽  
Xiang Li ◽  
Tonggang Zha ◽  
Xiaoxia Zhang

The redistribution of soil organic carbon (SOC) in response to soil erosion along the loess slope, China, plays an important role in understanding the mechanisms that underlie SOC’s spatial distribution and turnover. Consequently, SOC redistribution is key to understanding the global carbon cycle. Vegetation restoration has been identified as an effective method to alleviate soil erosion on the Loess Plateau; however, little research has addressed vegetation restoration’s effect on the SOC redistribution processes, particularly SOC’s spatial distribution and stability. This study quantified the SOC stock and pool distribution on slopes along geomorphic gradients in naturally regenerating forests (NF) and an artificial black locust plantation (BP) and used a corn field as a control (CK). The following results were obtained: 1) vegetation restoration, particularly NF, slowed the migration of SOC and reduced the heterogeneity of its distribution effectively. The topsoil SOC ratios of the sedimentary area to the stable area were 109%, 143%, and 210% for NF, BP, and CK, respectively; 2) during migration, vegetation restoration decreased the loss of labile organic carbon by alleviating the loss of dissolved organic carbon (DOC) and easily oxidized organic carbon (EOC). The DOC/SOC in the BP and NF increased significantly and was 13.14 and 17.57 times higher, respectively, than that in the CK (p < 0.05), while the EOC/SOC in the BP and NF was slightly higher than that in the CK. A relevant schematic diagram of SOC cycle patterns and redistribution along the loess slope was drawn under vegetation restoration. The results suggest that vegetation restoration in the loess slope, NF in particular, is an effective means to alleviate the redistribution and spatial heterogeneity of SOC and reduce soil erosion.


2020 ◽  
Author(s):  
Severin-Luca Bellè ◽  
Asmeret Asefaw Berhe ◽  
Frank Hagedorn ◽  
Cristina Santin ◽  
Marcus Schiedung ◽  
...  

2020 ◽  
Vol 92 (1) ◽  
pp. 2000307
Author(s):  
Yao V. Shan ◽  
Mohamed Soliman ◽  
Heinz Palkowski ◽  
Ernst Kozeschnik

Sign in / Sign up

Export Citation Format

Share Document