Aflatoxin Contamination in Corn Differs Among Inoculation Techniques

2010 ◽  
Vol 11 (1) ◽  
pp. 18 ◽  
Author(s):  
H. Arnold Bruns ◽  
Hamed K. Abbas

Aflatoxin research in corn (Zea mays L.) usually requires application of inoculum of Aspergillus flavus to soil or plant ears. The pin-bar vs. side-needle or spray vs. solid material inoculations using A. flavus isolate F3W4 (NRRL 30798) were compared in 2004, 2006, and 2007 using three hybrids in two irrigated experiments each year at Stoneville, MS. Both were planted on a silty clay soil in randomized complete block designs with four replications of treatments. Mature ears inoculated by the pin-bar, side-needle, or spray methods were analyzed for aflatoxin. Ears from controls and solid material inoculum treatments were sampled for analysis at plot harvest. Pin-bar inoculation had more aflatoxin in 2004 (551.9 ng/g) and 2006 (305.8 ng/g) than side-needle inoculation (342.2 ng/g and 151.1 ng/g for 2004 and 2006, respectively), which was greater than controls (76.8 ng/g and 21.6 ng/g for 2004 and 2006, respectively). Solid material inoculation did not differ in aflatoxin from controls. Spraying produced the most aflatoxin (344.1 ng/g) only in 2004. Aflatoxin was low in 2007 when timely rainfall, irrigation, and no temperatures ≥ 35°C resulted in only the pin-bar (20.8 ng/g) and solid material (20.6 ng/g) treatments having > 2.0 ng/g of aflatoxin. Accepted for publication 26 March 2010. Published 1 June 2010.

Author(s):  
Zainab Hasan

An agricultural experiment was conducted to study the effect of corn seeds inoculation with mutant, wild or mixed of them together of locally isolate of Bacillus polymyxa on the availability of phosphorus, growth and yield of corn (Zea mays L.) when it was planted in silty clay and loamy sand soils with the addition of four levels of triplsuperphosphate fertilizer (0, 50, 75 and 100 kg p/ha). B. polymyxa isolate was exposed to UV rays for 60 minutes to obtain mutagenic bacteria. Results showed that inoculation with wild isolate with 75 or 100 kg p/ha gave the best value for plant height, shoot dry weight, phosphorus concentration in the vegetative part and available phosphorus in the soil after planting. Inoculation with mutagenic isolate bacteria gave the value of 69.37 cm, 6 g/pot, 43.49 mg/pot and 27.52 mg/kg soil for plant height, shoot dry weight, phosphorus absorbed in vegetative part and available phosphorus, respectively when it planted in loamy sand or silty clay soil. On the other hand, the percentage of increase of the effect of phosphate fertilization levels was 47.82%, 39.70%, 75.53% and 73.46% in loamy sand soil and 46.74%, 56.96%, 85.33% and 53.12% in silty clay soil, respectively.


1987 ◽  
Vol 22 (4) ◽  
pp. 307-310 ◽  
Author(s):  
W. W. McMillian ◽  
N. W. Widstrom ◽  
D. M. Wilson

The use of plants that resist insects has been suggested as a potential means of reducing aflatoxin contamination in some crops. Dent corn, Zea mays L., germplasm possessing the characteristic of a relatively tight, complete husk cover and germplasm possessing the characteristic of a relatively loose, incomplete husk cover on the ear were evaluated for 3 years at Tifton, GA, for aflatoxin contamination. In two of the three test years, corn ears with tight, complete husk cover sustained significantly lower mean amounts of aflatoxin than ears with loose, incomplete husk cover following artificial inoculation with Aspergillus flavus Link spores. Ears hand-infested with maize weevils, Sitophilus zeamais (Motschulsky), sustained significantly higher amounts of aflatoxin (329 ng·g−1) than ears infested with fall armyworms, Spodoptera frugiperda (J. E. Smith), (80 ng·g−1), European corn borers, Ostrinia nubilalis (Hübner), (71 ng·g−1), or corn earworms Heliothis zea (Boddie) (60 ng·g−1). Overall, ears in the check (inoculated with A. flavus only) sustained significantly lower aflatoxin (37 ng·g−1) amounts than ears from plots supplemented with insects. Although insects were not applied in the check plots, some damage was observed on the ears.


Author(s):  
Mohammed Aajmi Salman ◽  
Jawad A. Kamal Al-Shibani

Beneficial microorganisms play a key role in the availability of ions minerals in the soil and use Randomized Complete Block Desing ( R.C.B.D ). The objective of this paper to the study effect of the of biofertilizer and miniral treatments on availability of NPK for crop corn zea mays L.Two types of biofertilizer are Bacterial Bacillus subtilis and Fungal Trichoderma harianum. Three levels of potassium fertilizer are (2.9533, 0.4000 and 2.9533). A field experiment in fall season of 2018 Has been conducted in silty clay loam soil. The experimental Results indicated that Bacillus and Trichoderma inoculation separately or together Have made a significant effect to increase in the availability of N P K in the soil compare to other treatments. The grain yield is where (2.9533, 0.4000 and 2.9533) of bacterial and fungal bio-fertilizer and potassium fertilizers respectively as compared to the control.


2021 ◽  
Vol 13 (11) ◽  
pp. 6506
Author(s):  
Roberto Fanigliulo ◽  
Daniele Pochi ◽  
Pieranna Servadio

Conventional seedbed preparation is based on deep ploughing followed by lighter and finer secondary tillage of the superficial layer, normally performed by machines powered by the tractor’s Power Take-Off (PTO), which prepares the seedbed in a single pass. Conservation methods are based on a wide range of interventions, such as minimum or no-tillage, by means of machines with passive action working tools which require two or more passes The aim of this study was to assess both the power-energy requirements of conventional (power harrows and rotary tillers with different working width) and conservation implements (disks harrow and combined cultivator) and the soil tillage quality parameters, with reference to the capability of preparing an optimal seedbed for wheat planting. Field tests were carried out on flat, silty-clay soil, using instrumented tractors. The test results showed significant differences among the operative performances of the two typologies of machines powered by the tractor’s PTO: the fuel consumption, the power and the energy requirements of the rotary tillers are strongly higher than power harrows. However, the results also showed a decrease of these parameters proceeding from conventional to more conservation tillage implements. The better quality of seedbed was provided by the rotary tillers.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Ruihuan She ◽  
Yongxiang Yu ◽  
Chaorong Ge ◽  
Huaiying Yao

Soil salinization typically inhibits the ability of decomposer organisms to utilize soil organic matter, and an increase in soil clay content can mediate the negative effect of salinity on carbon (C) mineralization. However, the interactive effects of soil salt concentrations and properties on C mineralization remain uncertain. In this study, a laboratory experiment was performed to investigate the interactive effects of soil salt content (0.1%, 0.3%, 0.6% and 1.0%) and texture (sandy loam, sandy clay loam and silty clay soil with 6.0%, 23.9% and 40.6% clay content, respectively) on C mineralization and microbial community composition after cotton straw addition. With increasing soil salinity, carbon dioxide (CO2) emissions from the three soils decreased, but the effect of soil salinity on the decomposition of soil organic carbon varied with soil texture. Cumulative CO2 emissions in the coarse-textured (sandy loam and sandy clay loam) soils were more affected by salinity than those in the fine-textured (silty clay) soil. This difference was probably due to the differing responses of labile and resistant organic compounds to salinity across different soil texture. Increased salinity decreased the decomposition of the stable C pool in the coarse-textured soil, by reducing the proportion of fungi to bacteria, whereas it decreased the mineralization of the active C pool in the fine-textured soil through decreasing the Gram-positive bacterial population. Overall, our results suggest that soil texture controlled the negative effect of salinity on C mineralization through regulating the soil microbial community composition.


2016 ◽  
Vol 19 (74) ◽  
pp. 77-88 ◽  
Author(s):  
M. Noshadi ◽  
S. Jamshidi ◽  
F. Foroharfar ◽  
◽  
◽  
...  

1995 ◽  
Vol 32 (1) ◽  
pp. 40-59 ◽  
Author(s):  
Abdel M.O. Mohamed ◽  
Raymond N. Yong ◽  
Miroslawa T. Mazus

In this study, the effect of temperature distribution and its influence on contaminant migration in a silty clay soil were examined. Three series of freezing-column tests were performed with three different fluids: distilled water, municipal waste leachate, and heavy metal – leachate solution. It was found that temperature distribution as a function of space and time was similar in all tests, most likely as a result of the limited amount of fluid intake. Moisture redistributions were varied as a function of experiment duration and the type of fluid used. The amount of fluid intake was directly related to the freezing time and the temperature gradient in the freezing column. The amount of unfrozen water content, ion concentration and temperature gradient were the controlling parameters that contributed to the contaminant transport in the frozen illitic silty clay soil. Na+-concentration profiles were mostly dependent on water movement in the soil column. The behaviour of Ca2+ and Mg2+ cations was similar to Na+; their concentrations in the soil solution decreased with freezing time due to ion exchange. The large accumulations of Pb2+, Zn2+, Cu2+, and Cd2+ in the lower 10 mm of the soil column occurred as a result of cation exchange and precipitation mechanisms. Key words : unsaturated, osmotic, diffusion, buffer, exchange, transport.


Sign in / Sign up

Export Citation Format

Share Document