scholarly journals The Use of Dewpoint Hygrometry to Measure Low Water Potentials in Soilless Substrate Components and Composites

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1393
Author(s):  
Jeb S. Fields ◽  
William C. Fonteno ◽  
Brian E. Jackson ◽  
Joshua L. Heitman ◽  
James S. Owen

Plant water availability in soilless substrates is an important management consideration to maximize water efficiency for containerized crops. Changes in the characteristics (i.e., shrink) of these substrates at low water potential (<−1.0 MPa) when using a conventional pressure plate-base can reduce hydraulic connectivity between the plate and the substrate sample resulting in inaccurate measures of water retention. Soilless substrate components Sphagnum peatmoss, coconut coir, aged pine bark, shredded pine wood, pine wood chips, and two substrate composites were tested to determine the range of volumetric water content (VWC) of surface-bound water at water potentials between −1.0 to −2.0 MPa. Substrate water potentials were measured utilizing dewpoint hygrometry. The VWC for all components or composites was between 5% and 14%. These results were considerably lower compared to previous research (25% to 35% VWC) utilizing conventional pressure plate extraction techniques. This suggests that pressure plate measurements may overestimate this surface-bound water which is generally considered unavailable for plant uptake. This would result in underestimating available water by as much as 50%.

2000 ◽  
Vol 66 (12) ◽  
pp. 5201-5205 ◽  
Author(s):  
Todd A. Burnes ◽  
Robert A. Blanchette ◽  
Roberta L. Farrell

ABSTRACT Wood extractives, commonly referred to as pitch, cause major problems in the manufacturing of pulp and paper. Treatment of nonsterile southern yellow pine chips for 14 days withPseudomonas fluorescens, Pseudomonas sp.,Xanthomonas campestris, and Serratia marcescens reduced wood extractives by as much as 40%. Control treatments receiving only water lost 11% of extractives due to the growth of naturally occurring microorganisms. Control treatments were visually discolored after the 14-day incubation, whereas bacterium-treated wood chips were free of dark staining. Investigations using P. fluorescens NRRL B21432 showed that all individual resin and fatty acid components of the pine wood extractives were substantially reduced. Micromorphological observations showed that bacteria were able to colonize resin canals, ray parenchyma cells, and tracheids. Tracheid pit membranes within bordered pit chambers were degraded after treatment with P. fluorescensNRRL B21432. P. fluorescens and the other bacteria tested appear to have the potential for biological processing to substantially reduce wood extractives in pine wood chips prior to the paper making process so that problems associated with pitch in pulp mills can be controlled.


2010 ◽  
Vol 12 (4) ◽  
pp. 672 ◽  
Author(s):  
Agnieszka Brandt ◽  
Jason P. Hallett ◽  
David J. Leak ◽  
Richard J. Murphy ◽  
Tom Welton

Materials ◽  
2010 ◽  
Vol 4 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Tara M. Todoruk ◽  
Ian D. Hartley ◽  
Roshanak Teymoori ◽  
Jianzhen Liang ◽  
Hartwig Peemoeller

2012 ◽  
Vol 14 (4) ◽  
pp. 1079 ◽  
Author(s):  
Agnieszka Brandt ◽  
James K. Erickson ◽  
Jason P. Hallett ◽  
Richard J. Murphy ◽  
Antje Potthast ◽  
...  

2015 ◽  
Vol 29 (4) ◽  
pp. 525-531
Author(s):  
Barbara Witkowska-Walczak ◽  
Piotr Bartmiński ◽  
Cezary Sławiński

Abstract Hydrophysical characteristics of arctic and temperate zones soils were determined. The soils from the temperate zone showed a greater capability of water retention than those from the arctic zone. In both investigated depths (surface and subsurface layers), the highest water content was observed for the Sądecki Regosol, and the lowest one for Turbic Cryosol formed in the cell forms from Spitsbergen at all soil water potentials. The differences between water content for these soils at the same soil water potentials varied between 20 and 25% vol. in the surface layer, and from 19 to 22% vol. in the subsurface, respectively. The lowest differences (2.7-5.0% vol.) in water content were noticed between the Wyspowy Regosol and Turbic Cryosol (Skeletic) derived in the sorted circles. In both depths, higher values of water conductivity were observed for Regosols than for Cryosols at high soil water potentials, from -0.1 till -7 kJ m-3. These differences were especially high at -0.1 kJ m-3 and they were three or four times higher for soils from the temperate zone than from the arctic ones. For lower water potentials, the differences in water conductivity do not exceed one order in the surface layer and two orders in the subsurface.


2021 ◽  
Vol 13 (18) ◽  
pp. 10439
Author(s):  
Elena Khan ◽  
Kadir Ozaltin ◽  
Andres Bernal-Ballen ◽  
Antonio Di Martino

The study deals with the combination of biopolymers to develop hydrogels intended for agriculture application. The aim is to propose a renewable and eco-compatible solution to enhance agrochemicals and water efficiency and contribute to maintaining soil fertility. We developed a set of hydrogels based on casein and chitosan for water retention and release of agrochemicals, in particular nitrogen fertilizer urea. The weight ratio of biopolymers, from 0.5 to 2, was investigated to understand the influence of their content on the morphology, swelling, swelling-drying cycles, and water retention in soil. The average content of urea in the hydrogels was 30% of the total weight, and up to 80% was released in the soil in 50 days. The biodegradation of the hydrogels in soil has been investigated by the burial method and monitoring the release of CO2. Results demonstrated that by increasing the content of chitosan, the biodegradation time is prolonged up to 20% in 90 days. The obtained results support the ultimate purpose of the work that the combination of two biopolymers at proper weight ratio could be a valid alternative of the marketed hydrogels with the final goal to promote soil fertility and water retention and prolong biodegradation.


2016 ◽  
Vol 26 (2) ◽  
pp. 199-205
Author(s):  
W. Garrett Owen ◽  
Brian E. Jackson ◽  
Brian E. Whipker ◽  
William C. Fonteno

Processed pine wood (Pinus sp.) has been investigated as a component in greenhouse and nursery substrates for many years. Specifically, pine wood chips (PWC) have been uniquely engineered/processed into a nonfiberous blockular particle size, suitable for use as a substrate aggregate. In container substrates, nitrogen (N) tie-up during crop production is of concern when substrates contain components with high carbon (C):N ratios, like that of PWC that are made from fresh pine wood. The objective of this research was to compare the N requirements of plants grown in sphagnum peat–based substrates amended with perlite or PWC. Fertility concentrations of 100, 200, or 300 mg·L−1 N were applied to ‘Profusion Orange’ zinnia (Zinnia ×hybrida) and ‘Moonsong Deep Orange’ marigold (Tagetes erecta) grown in sphagnum peat–based substrates containing 10%, 20%, or 30% (by volume) perlite or PWC. Zinnia plant substrate solution electrical conductivity (EC) was not influenced by percentage of perlite or PWC. Perlite-amended substrates fertilized with 200 mg·L−1 N for growing zinnia, maintained a constant EC within optimal levels of 1.0 to 2.6 mS·cm−1 from 14 to 42 days after planting (DAP), and then EC increased at 49 DAP. In substrates fertilized with 100 and 300 mg·L−1 N, EC levels steadily declined and then increased, respectively. Zinnia plants grown in PWC-amended substrates fertilized with 200 mg·L−1 N maintained a constant EC within the optimal range from 14 to 49 DAP. Marigold substrate solution EC was only influenced by N concentration and followed a similar response to zinnia substrate solution EC. Zinnia and marigold substrate solution pH was influenced by N concentration and generally decreased with increasing N concentration. Plant growth and shoot dry weight were similar when fertilized with 100 and 200 mg·L−1 N. According to this study, plants grown in PWC-amended substrates fertilized with 100 to 200 mg·L−1 N can maintain adequate substrate solution pH and EC levels and sustain plant growth with no additional N supplements. Pine wood chips are engineered and processed to specific sizes and shapes to be functional as aggregates in a container substrate. Not all wood components are designed or capable of improving/influencing the physical and chemical behavior of a substrate the same. On the basis of the variability of many wood components being developed and researched, it is suggested that any and all substrate wood components not be considered the same and be tested/trialed before large-scale use.


2013 ◽  
pp. 345-349
Author(s):  
W.G. Owen ◽  
B.E. Jackson ◽  
W.C. Fonteno ◽  
B.E. Whipker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document