scholarly journals Micropropagation of Tulip via Somatic Embryogenesis

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1857
Author(s):  
Małgorzata Podwyszyńska ◽  
Agnieszka Marasek-Ciolakowska

An effective method of tulip regeneration via somatic embryogenesis (SE) was developed. Explants, flower stem slices excised from cooled bulbs were incubated in darkness on MS modified media containing auxins alone (2,4-dichlorophenoxyacetic acid—2,4-D, 1-naphthalene acetic acid—NAA and 4-amino-3,5,6-trichloro-2-pyridine carboxylic acid—picloram) or combined with thidiazuron (TDZ) at 0.1 and 0.5 mg L−1. Yellowish-white callus with a granular structure was developed in the presence of all auxins on the cut surface from the tissues of the vascular bundles. From this, lines of embryogenic calli were derived. The addition of TDZ to the medium with auxins significantly stimulated somatic embryo formation. Cyclic and the most intensive proliferation of embryogenic callus as well as embryo formation was obtained in the presence of 2,4-D at 0.1 mg L−1 combined with TDZ at 0.5 mg L−1. Addition of proline enhanced either callus proliferation rate or frequency of embryo formation. The best quality embryos with cotyledons longer than 10 mm able to form bulbs were recorded when TDZ was replaced with 6-benzylaminopurine (BAP) at the concentration of 0.1 mg L−1. Histomorphology showed that the development of somatic embryos could have either external or internal origins. Embryos of external origin were initiated by cell division on the edge of embryogenic calli. Embryos of internal origin resulted from the division of parenchyma cells inside the tissue. Embryonic cells were characterized by their small volume, regular shape, dense cytoplasm and large nuclei. The globular embryos were covered by a distinct layer of periderm. Then, the embryos developed into structures having leaf-shaped cotyledons with a procambial strand and a sideward-orientated meristem of the vegetative apex (stolon). Cotyledon embryos did not show vascular connections with the parent tissue, and they did not develop embryonic roots.

1996 ◽  
Vol 44 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Perumal Venkatachalam ◽  
Narayanasamypillai Jayabalan

High yields of protoplasts were obtained from immature leaves of aseptically grown plants of Arachis hypogaea using an enzyme solution containing cellulase 2.0% (w/v) and Macerozyme 1.0% (w/v) in 0.6 M mannitol. Isolated protoplasts were cultured in Kao's medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The protoplasts started to divide after 3–5 days of culture. Sustained divisions resulted in mass production of cell colonies and mini calli in 4 weeks. After 4 weeks, protoplast colonies were transferred to the Murashige and Skoog (MS) medium supplemented with a-naphthalene acetic acid (NAA) and BAP. Colonies proliferated into actively growing calli. Further attempts to regenerate plants from such calli were not successful. However, protoclones differentiated roots on the same medium. Alternative methods for plant regeneration from protoplast derived callus cultures were tried through somatic embryogenesis. Protoplast-derived calli treated with 2,4-D and BAP formed somatic embryos. Somatic embryogenesis began in the proembryo stage and proceeded from globular to dicotyledonary stage. Embryos were then transferred onto hormone-free MS medium for germination. Five to ten percent of these embryoids germinated and grew to plantlets. Regenerated plants were transferred to plastic cups and grown to maturity.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 461D-461 ◽  
Author(s):  
Lurline Marsh

Four cowpea [Vigna unguiculata (L). Walp] genotypes; IT 82E-18, IT 82E-16, Pinkeye Purple Hull, and Coronet were tested for somatic embryo formation and embryogenesis. Explants were 3-week-old cotyledons from which the embryonic axes were removed. Cotyledons were cultured in eight media combinations representing modifications of two media, one containing Murashige and Skoog Basal salt with B5 vitamins (MSB), 500 mg/L casein-hydrolysate (CS), 500 mg/L sodium chloride, 3% sucrose, 0.7% agar, 2mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L benzylamino purine, and the other containing (MSB), 3% sucrose, 40 mg/L 2-4-D and 0.2% gellan gum. After 1 month, 40% to 100% of explants produced calli and few produced shoots. Subcultured shoots in MS with 0.1 mg/L indole-3-butyric acid (IBA) or with IBA and 0.5mg/L kinetin (KT) failed to produced roots. The only green cotyledonary stage embryo was produced on this latter medium. Subculture of calli in MSB containing CS, mannitol, sucrose, agar, indoleacetic acid, and KT produced cream-colored globular embryos, roots, and a few leaves.


2016 ◽  
Vol 11 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Guomin Shi ◽  
Lina Yang ◽  
Tao He

AbstractA protocol is described for plant regeneration from protoplasts of Gentiana straminea Maxim. via somatic embryogenesis. Protoplasts were isolated from embryogenic calli in an enzyme solution composed of 2% Cellulase Onozuka R-10, 0.5% Macerozyme R-10, 0.5% Hemicellulase, and 0.5 M sorbitol with a yield of 3.0 × 106 protoplasts per gram of fresh weight. Liquid, solid-liquid double layer (sLD) and agar-pool (aPL) culture systems were used for protoplast culture. The aPL culture was the only method that produced embryogenic, regenerative calli. With aPL culture, the highest frequencies of protoplast cell division and colony formation were 39.6% and 16.9%, respectively, on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L N6-benzylaminopurine (BA). Microcalli were transferred to solid MS medium containing a reduced concentration of 2,4-D (0.5 mg/L) to promote the formation of embryogenic calli. Somatic embryos developed into plantlets on MS medium supplemented with 2 mg/L BA at a rate of 43.7%.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Premananda Das

Somatic embryogenesis was achieved in four leguminous tree species, that is, Acacia catechu, Acacia arabica, Hardwickia binata, and Dalbergia sissoo using immature zygotic embryos as explants on Murashige and Skoog (MS) medium supplemented with 0.25–1.0 mg/l Kn (kinetin) and 2.0–3.0 mg/l 2,4-D (2,4-dichlorophenoxyacetic acid) or NAA (1-napthaleneacetic acid) and 3% sucrose. MS medium containing 2.0 mg/l 2,4-D and 1.0–1.5 mg/l Kn was noted to be most effective in inducing friable embryogenic callus (FEC); the number of somatic embryos per culture varied in MS medium supplemented with 1.0–2.0 mg/l 2,4-D or NAA and 0.25–1.5 mg/l kinetin. The maximum number of somatic embryos was obtained in MS medium containing 1.5–2.0 mg/l 2,4-D or NAA and 1.0–1.5 mg/l kinetin; proliferation of embryogenic calli was enhanced in cultures having 1.0–2.0 mg/l 2,4-D, 1.0–1.5 mg/l kinetin, and 400–600 mg/l L-Proline. The somatic embryos in various shapes and sizes after the first subculture on MS medium supplemented with 0.1 mg/l IAA and 0.25 mg/l BA; developed shoots and rooted in strength MS medium supplemented with 0.1 mg/l IBA or IAA. The somatic embryo-derived plantlets were transferred to the field after being hardened in the climate-controlled hardening chamber.


1984 ◽  
Vol 62 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
L. S. Kott ◽  
K. J. Kasha

Somatic embryogenesis was induced in callus previously initiated from immature embryos of barley. These cultures ranged in age from 6 weeks to 30 months. Embryoids were readily initiated from homogenized suspension-grown aggregates when plated on modified B5 media with 2,4-dichlorophenoxyacetic acid. Low concentrations (0.1 and 0.05 mg∙L−1) of abscisic acid promoted further maturation of embryoids, while gibberellic acid (1 mg∙L−1) and kinetin (0.1 mg∙L−1) were used in the media to encourage embryoid germination. The development of somatic embryoids from initiation through maturation and germination is described.


1978 ◽  
Vol 56 (10) ◽  
pp. 1287-1290 ◽  
Author(s):  
Ming-Chin Liu ◽  
Wen-Huei Chen

Experiments have been performed to induce callus formation and organogenesis in anther culture of cassava (Manihot esculenta Crantz). Callusing was achieved on a modified Murashige and Skoog medium (MSB) supplemented with 4.44 μM 6-benzylaminopurine (BAP) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2.4-D). No callus was formed from anthers pretreated at 4 °C for more than 48 h or on a medium containing 4g/ℓ activated charcoal. Callus on MSB with 4.44–8.88 μM BAP alone formed roots only. BAP (8.88 μM) in combination with α-naphthalene acetic acid (NAA) (10.74 μM) resulted in chlorophyll formation in callus. Abscisic acid (ABA) acted as an antagonist to NAA in reducing the frequency of callus greening when the latter was applied jointly with BAP. Chromosome counts of mitotic figures from callus cells ranged from 34 to 38 indicating that the calli were derived from the somatic tissues of the anthers.


1989 ◽  
Vol 19 (2) ◽  
pp. 285-288 ◽  
Author(s):  
S. A. Merkle ◽  
A. T. Wiecko

Tissue cultures were initiated from developing seeds of black locust (Robiniapseudoacacia L.) collected from three trees at weekly intervals from 1 week following anthesis until early fruit maturity. Explants were cultured on media containing 0, 2, or 4 mg/L 2,4-dichlorophenoxyacetic acid and 0 or 0.25 mg/L 6-benzyladenine. Seeds explanted onto hormone-supplemented media remained on these media for 1 or 3 weeks before being placed on hormone-free media, or were maintained on hormone-supplemented media for the entire study. Direct somatic embryogenesis was observed in a single culture, initiated from a seed collected 4 weeks after anthesis and cultured for 1 week on a medium supplemented with 4 mg/L 2,4-dichlorophenoxyacetic acid and 0.25 mg/L 6-benzyladenine before transfer to basal medium. Although it could not be discerned from which part of the explant somatic embryos were derived, secondary embryogenesis continued from the radicles of cotyledonary-stage somatic embryos. Most somatic embryos were well formed, with two distinct cotyledons. Embryos germinated precociously, producing plantlets that were initially weak but later gained vigor and resembled seedlings.


1982 ◽  
Vol 60 (12) ◽  
pp. 2547-2555 ◽  
Author(s):  
Gaëtan Harvais

A new medium for growing Cypripedium reginae Walt. axenically from seed was designed. Liquid culture proved unsuitable, hence a 1% agar medium supplemented with 5% potato extract was used to investigate optimal mineral element, vitamin, amino acid, sugar, and growth regulator supplements for germination, and subsequent growth. A modified Pfeffer solution with 1400 mg/L NH4NO3 + 19 mg/L ammonium citrate + 2% dextrose + 10 mg/L niacin + 5 mg/L calcium pantothenate + 5 mg/L thiamine HCl + 1 mg/L kinetin + 0.1 mg/L α-naphthaleneacetic acid gave best germination and growth to 2 years with little or no phenolic production. Gamborg's B5 medium and Murashige–Skoog (MS) medium were less than optimal when tested against the above medium. Growth regulators were more active when sterilized by membrane filtration instead of autoclaving. Of the three aminopurines tested, kinetin, benzylaminopurine (BAP), and 6(γ,γ-dimethylallylamino) purine (γγ), the order of activity was initially γγ → BAP → kinetin, but kinetin produced better greening of protocorms and plantlets, and eventually greater survival. Hence, it was chosen for further study. The auxins indole-3-acetic acid (IAA), naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D) were also tested alone and in combination with the aminopurines. They did not stimulate germination, but improved growth and survival when combined with aminopurines. The most active of the auxins were NAA → IAA → IBA → 2,4-D. A kinetin:NAA ratio of 10:1 was very satisfactory.


1998 ◽  
Vol 46 (1) ◽  
pp. 151 ◽  
Author(s):  
K. E. Nolan ◽  
R. J. Rose

Medicago truncatula (Jemalong 2HA) can be regenerated by somatic embryogenesis utilising 1-naphthalene acetic acid (NAA) and 6-benzylaminopurine (BAP). There is a requirement for both NAA and BAP for callus induction and embryo formation. There is no requirement for a drop in auxin concentration to induce embryos. Abscisic acid (ABA) when present with NAA and BAP during embryo formation at a concentration of 1 µM, increases the number of embryos per callus. The ABA treatment stimulates embryo numbers in both light and darkness. The conversion efficiency of embryo to plant is unchanged irrespective of the presence of ABA during embryo formation, indicating that ABA does not improve the regeneration of the embryos once formed. Importantly, the presence of light in the embryo formation period causes a marked inhibition of embryo conversion.


Sign in / Sign up

Export Citation Format

Share Document