scholarly journals Assessment of Drought and Heat Tolerance of Durum Wheat Lines Derived from Interspecific Crosses Using Physiological Parameters and Stress Indices

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 695
Author(s):  
Hafid Aberkane ◽  
Bouchra Belkadi ◽  
Zakaria Kehel ◽  
Abdelkarim Filali-Maltouf ◽  
Izzat S. A. Tahir ◽  
...  

Drought and high temperature are the major abiotic stresses for wheat production. The present study investigated the effect of drought and chronic heat stress on physiological parameters of durum wheat lines derived from interspecific crosses and their association with yield. Seventy-seven durum wheat lines were evaluated during two seasons (2016–2017 and 2017–2018) for drought tolerance at Tessaout (Morocco) using irrigated and rainfed treatments and for heat tolerance at Wad Medani (Sudan). Five drought screening indices (alone or combined) and physiological parameters were used to assess drought and heat tolerance. Among the physiological parameters used, canopy temperature (CT) had moderate heritability and was significantly affected by both severe and moderate drought stresses. CT at early heading showed a stronger correlation with grain yield (GY) and total biomass (BY) under heat stress. The use of maximum quantum yield of PSII (Fv/Fm) for drought/heat screening was limited by the low genetic variation despite its significant correlation with yield under drought (r2 = 0.22) and heat (r2 = 0.4). The normalized difference vegetation index (NDVI) at vegetative stage was highly correlated with GY and BY and it showed high genotypic variation that can allow for efficient selection. The grain filling rate (GFR) was found to be highly correlated with GY and BY under heat stress. The modified stress tolerance index (MsSTI) had the highest association with GY under drought (R2 = 0.82) while the mean productivity (MP) was adapted to both optimal conditions (R2 = 0.77) and drought stress (R2 = 0.73). The computation of a mean score index (MSI) improved the selection efficiency under drought (R2 = 0.92). The results showed good potential for lines derived from wide crosses to increase variability for heat and drought adaptive physiological traits.

Crop Science ◽  
2020 ◽  
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali‐Maltouf ◽  
Zakaria Kehel ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1036
Author(s):  
Noureddine El haddad ◽  
Karthika Rajendran ◽  
Abdelaziz Smouni ◽  
Nour Eddine Es-Safi ◽  
Nadia Benbrahim ◽  
...  

Lentil (Lens culinaris Medikus) is one of the most important cool season food legume crops grown in many countries. Seeds are typically rich in protein, fiber, prebiotic carbohydrates and minerals, such as iron and zinc. With changing climate and variability, the lentil crop faces frequent droughts and heat stress of varying intensity in its major production zones. In the present study, a set of 162 lentil accessions selected through the Focused Identification of Germplasm Strategy (FIGS) were screened for tolerance to heat stress and combined heat-drought stresses under field conditions at two contrasting locations, namely Marchouch and Tessaout in Morocco. The results showed a significant genotypic variation for heat tolerance and combined heat-drought tolerance among the accessions at both locations. Based on the heat tolerance index (HTI), accessions, namely ILL 7833, ILL 6338 and ILL 6104, were selected as potential sources of heat tolerance at Marchouch, and ILL 7814 and ILL 8029 at Tessaout. Using the stress tolerance index (STI), ILL 7835, ILL 6075 and ILL 6362 were identified as the most tolerant lines (STI > 1) at Marchouch, and ILL 7814, ILL 7835 and ILL 7804 (STI > 1) at Tessaout, under the combined heat-drought stress conditions. Accession ILL 7835 was identified as a good source of stable tolerance to heat stress and combined heat-drought stress at both locations.


2021 ◽  
Author(s):  
Bradley C Posch ◽  
Julia Hammer ◽  
Owen K Atkin ◽  
Helen Bramley ◽  
Yong-Ling Ruan ◽  
...  

Heat-induced inhibition of photosynthesis is a key factor in declining wheat performance and yield. Variation in wheat heat tolerance can be characterised using the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled environment experiments. We also assessed whether intraspecies variation in wheat Tcrit mirrors patterns of global interspecies variation in heat tolerance reported for mostly wild, woody plants. In the field, wheat Tcrit varied through the course of a day, peaking at noon and lowest at sunrise, and increased as plants developed from heading to anthesis and grain filling. Under controlled temperature conditions, heat stress (36°C) was associated with a rapid rise in wheat Tcrit (i.e. within two hours of heat stress) that peaked after 3—4 days. These peaks in Tcrit indicate a physiological limitation to photosystem II heat tolerance. Analysis of a global dataset (comprising 183 Triticum and wild wheat (Aegilops) species) generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20°C (about two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation which has been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Yet, the observed genotypic variation and plasticity of wheat Tcrit suggests that this trait could be a useful tool for high-throughput phenotyping of wheat photosynthetic heat tolerance.


2017 ◽  
Vol 142 (5) ◽  
pp. 367-375 ◽  
Author(s):  
Jinyu Wang ◽  
Patrick Burgess ◽  
Stacy A. Bonos ◽  
William A. Meyer ◽  
Bingru Huang

Summer decline is typically characterized by heat and drought stress and is a major concern for fine fescue species (Festuca). The objectives of this study were to examine whether heat or drought stress is more detrimental, and to determine the genotypic variations in heat and drought tolerance for fine fescues. A total of 26 cultivars, including seven hard fescues (Festuca trachyphylla), eight chewings fescues (Festuca rubra ssp. commutate), seven strong creeping red fescues (Festuca rubra ssp. rubra), two sheep fescues (Festuca ovina ssp. hirtula), and two slender creeping red fescues (Festuca rubra ssp. littoralis) were subjected to prolonged heat or drought stress in growth chambers. Several physiological parameters, including turf quality (TQ), electrolyte leakage (EL), photochemical efficiency (Fv/Fm) chlorophyll content (Chl), and relative water content (RWC) were measured in plants exposed to heat or drought stress. The results indicated that heat stress was more detrimental than drought stress for fine fescue species. Based on TQ and major physiological parameters (EL and Fv/Fm) under heat stress, several cultivars with good heat tolerance were selected, including ‘Blue Ray’, ‘Spartan II’, ‘MN-HD1’, ‘Shoreline’, ‘Navigator II’, ‘Azure’, ‘Beacon’, ‘Aurora Gold’, ‘Reliant IV’, ‘Marco Polo’, ‘Garnet’, ‘Wendy Jean’, ‘Razor’, and ‘Cindy Lou’. Based on TQ and major physiological parameters (EL, RWC, and Fv/Fm) under drought stress, several cultivars with good drought tolerance were selected, including ‘Spartan II’, ‘MN-HD1’, ‘Reliant IV’, ‘Garnet’, ‘Azure’, and ‘Aurora Gold’. These cultivars could be used in hot, dry, or both environments and as breeding germplasm for developing heat tolerance, drought tolerance, or both.


2020 ◽  
Author(s):  
Forouzan Bahrami ◽  
Ahmad Arzani ◽  
Mehdi Rahimmalek

AbstractThermal stress at the reproductive stage poses a substantial constraint on cereal production worldwide. A two-year field study was conducted to assess tolerance to terminal heat stress in cultivated (Hordeum vulgare ssp. vulgare L.) and wild (H. vulgare ssp. spontaneum L.) barley genotypes using phenological and agronomic traits as well as selection indices based on grain yield. A new heat-tolerance index was tested while a simultaneous study was also carried out of both phenological and grain yield-related variables as well as previously defined indices. Results of analysis of variance showed the significant genotypic and high-temperature stress (environment) effects on all the traits studied. In contrast to the cultivated genotypes, the wild ones were found less affected by high-temperature stress. Moreover, both cultivated and wild genotypes were observed to use the life cycle shortening as a mechanism to evade heat stress. In addition, supplementary tolerance mechanisms were also found likely to contribute to heat-stress evasion in the wild germplasm. Grain yield showed a strong relationship with both stress tolerance index (STI) and heat tolerance index (HTI) among the wild genotypes. However, multivariate analysis highlighted the feasibility of HTI to screen high-temperature tolerant wild genotypes under harsh environments with the most high-temperature tolerant wild genotypes identified originating from warm climates.


2013 ◽  
Vol 8 (16) ◽  
pp. 1559-1562
Author(s):  
Rashidi Varahram ◽  
Reza Tarinejad Ali ◽  
Kazemiarbat Hamdollah

2011 ◽  
Vol 9 (01) ◽  
pp. 59-69 ◽  
Author(s):  
L. Krishnamurthy ◽  
P. M. Gaur ◽  
P. S. Basu ◽  
S. K. Chaturvedi ◽  
S. Tripathi ◽  
...  

Chickpea is the third most important pulse crop worldwide. Changes in cropping system that necessitate late planting, scope for expansion in rice fallows and the global warming are pushing chickpeas to relatively warmer growing environment. Such changes demand identification of varieties resilient to warmer temperature. Therefore, the reference collection of chickpea germplasm, defined based on molecular characterization of global composite collection, was screened for high temperature tolerance at two locations in India (Patancheru and Kanpur) by delayed sowing and synchronizing the reproductive phase of the crop with the occurrence of higher temperatures ( ≥ 35°C). A heat tolerance index (HTI) was calculated using a multiple regression approach where grain yield under heat stress is considered as a function of yield potential and time to 50% flowering. There were large and significant variations for HTI, phenology, yield and yield components at both the locations. There were highly significant genotypic effects and equally significant G × E interactions for all the traits studied. A cluster analysis of the HTI of the two locations yielded five cluster groups as stable tolerant (n = 18), tolerant only at Patancheru (n = 34), tolerant only at Kanpur (n = 23), moderately tolerant (n = 120) and stable sensitive (n = 82). The pod number per plant and the harvest index explained ≥ 60% of the variation in seed yield and ≥ 49% of HTI at Kanpur and ≥ 80% of the seed yield and ≥ 35% of HTI at Patancheru, indicating that partitioning as a consequence of poor pod set is the most affected trait under heat stress. A large number of heat-tolerant genotypes also happened to be drought tolerant.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Shi ◽  
Luiz Fernando Brito ◽  
Aoxing Liu ◽  
Hanpeng Luo ◽  
Ziwei Chen ◽  
...  

Abstract Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1, KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC, and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle.


Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


Sign in / Sign up

Export Citation Format

Share Document