scholarly journals Optimizing Carbon Sequestration in Croplands: A Synthesis

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 882
Author(s):  
Alexandra Tiefenbacher ◽  
Taru Sandén ◽  
Hans-Peter Haslmayr ◽  
Julia Miloczki ◽  
Walter Wenzel ◽  
...  

Climate change and ensuring food security for an exponentially growing global human population are the greatest challenges for future agriculture. Improved soil management practices are crucial to tackle these problems by enhancing agro-ecosystem productivity, soil fertility, and carbon sequestration. To meet Paris climate treaty pledges, soil management must address validated approaches for carbon sequestration and stabilization. The present synthesis assesses a range of current and potential future agricultural management practices (AMP) that have an effect on soil organic carbon (SOC) storage and sequestration. Through two strategies—increasing carbon inputs (e.g., enhanced primary production, organic fertilizers) and reducing SOC losses (e.g., reducing soil erosion, managing soil respiration)—AMP can either sequester, up to 714 ± 404 (compost) kg C ha−1 y−1, having no distinct impact (mineral fertilization, no-tillage), or even reduce SOC stocks in the topsoil (bare fallow, business-as-usual). AMP can sequester between −20 ± 210 (mineral fertilization) and 714 ± 404 (compost) kg C ha−1 y−1 in the topsoil. No-tillage practices have no distinct impact, and bare fallow or “business-as-usual” scenarios even reduce SOC stocks in the topsoil. Overall, the carbon sequestration potential of the subsoil (>40 cm) requires further investigation. Moreover, climate change, permanent soil sealing, consumer behavior in dietary habits and waste production, as well as the socio-economic constraints of farmers (e.g., information exchange, long-term economic profitability) are important factors for implementing new AMPs. This calls for life-cycle assessments of those practices.

2013 ◽  
Vol 13 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Nagmindra Dahal ◽  
Roshan M Bajracharya

An abundance of soil organic carbon (SOC) generally enhances the quality of lands for agriculture or forestry. Concentration of SOC varies in accordance to the type of land use, the inputs to the soil, and natural factors including climate and vegetation. SOC is vital for sustaining agricultural productivity which chiefly depends on both the inherent soil type and crop management practices affecting depletion or replenishment of organic matter over the years. Assessment of SOC concentration is a characteristic measurement of evaluating soil quality and the carbon sequestration potential of agricultural land. This study aims to assess SOC distribution on selected farmlands of Nepal’s mid-hills, where farmers have adopted sustainable soil management practices in non-irrigable hill terraces (“Bari” land) in comparison with those of surrounding Bari and forests where no such interventions are made. Thus the present study estimated SOC content of three types of land use – farmland with sustainable soil management practices (SSMP), farmland without sustainable management practices (Non-SSMP) and the community managed forest in four mountain districts of Nepal, namely Baglung, Dhading, Kavre and Okhaldhunga. This study found the average SOC stocks in the SSMP land in the range of 20 - 44 Mgha-1,those in non-SSMP agricultural areas 15 to 48 Mgha-1, and in the forested land 16 to 23 Mgha-1. In general, the abundance of SOC stocks are in the order of SSM>Non-SSM>Forests. The analysis indicates the high potential for carbon sequestration in hill agriculture lands through sustainable soil management. Nepal Journal of Science and Technology Vol. 13, No. 1 (2012) 133-141 DOI: http://dx.doi.org/10.3126/njst.v13i1.7452


Soil Research ◽  
2010 ◽  
Vol 48 (1) ◽  
pp. 7 ◽  
Author(s):  
K. Y. Chan ◽  
A. Oates ◽  
G. D. Li ◽  
M. K. Conyers ◽  
R. J. Prangnell ◽  
...  

In Australia, pastures form the basis of the extensive livestock industries and are important components of crop rotation systems. Despite recent interest in the soil carbon sequestration value of pastures in the mitigation of climate change, little information is available on the soil carbon sequestration potential of pastures in New South Wales farming systems. To quantify the soil carbon stocks under different pastures and a range of pasture management practices, a field survey of soil carbon stocks was undertaken in 2007 in central and southern NSW as well as north-eastern Victoria, using a paired-site approach. Five comparisons were included: native v. introduced perennial, perennial v. annual, continuous v. rotational grazing, pasture cropping v. control, and improved v. unimproved pastures. Results indicated a wide range of soil organic carbon (SOC) stocks over 0–0.30 m (22.4–66.3 t C/ha), with little difference when calculated based on either constant soil depth or constant soil mass. Significantly higher SOC stocks were found only as a result of pasture improvement using P application compared with unimproved pastures. In this case, rates of sequestration were estimated to range between 0.26 and 0.72 t C/ha.year, with a mean rate of 0.41 t C/ha.year. Lack of significant differences in SOC stocks for the other pastures and pasture management practice comparisons could be due to inherent problems associated with the paired-site survey approach, i.e. large variability, difficulties in obtaining accurate site history, and the occasional absence of a valid control as well as the likely lower rates of SOC sequestration for these other comparisons. There is a need for scientific long-term trials to quantify the SOC sequestration potential of these other pastures and pasture management practices.


2021 ◽  
Author(s):  
Dimitris Triantakonstantis ◽  
Spyros Detsikas

<p>Soil organic carbon (SOC) is the carbon that remains in the soil after the partial decomposition of any material produced by living organisms. It is an essential parameter for agricultural production, the potential sequestration of CO₂ in soil and a vital soil function for global carbon cycle. However, a vast potential of soil carbon is removed from agricultural soils due to non-sustainable soil management practices. Mapping SOC and its changes over time and space is highly valuable for estimating the CO₂ emissions and effects of climate change to the environment. In the present work, the Greek National Map of SOC is presented calculating the SOC stock in 30 arc-seconds spatial resolution using the Global Soil Partnership and Food and Agriculture Organization of the United Nations (FAO) guidelines for SOC mapping. The presented methodology considers the reference framework of the SCORPAN model for digital soil mapping, which can predict SOC stocks in correspondence with soil forming factors. Among the key variables used for estimating SOC stocks are environmental covariates such as climate and meteorological data, thematic maps, digital terrain data, geomorphometry and soil data. Data mining and geostatistical techniques (random forests, support vector machines, regression-kriging) are used to estimate the SOC stocks. Internal and external map accuracy is used to evaluate the performance of the Greek National SOC map. Accuracy of FAO’s methodology was examined herein using different modelling approaches. As indicated in the results, the most accurate map was produced by the random forest technique and an accuracy of FAC2=0.968, RMSE=0.322 and r=0.756. The main findings are also discussed herein covering aspects relevant to the method implementation, validation and feasibility of operational implementation.</p><p><strong>Keywords: </strong>soil organic carbon, climate change, soil management practices, Greek National Map</p>


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


Author(s):  
Dr. Nidhi Chaturvedi, ◽  

The carbon sequestration potential of an unmanaged and previously unstudied Acacia catechu in the Mukundara National Park Rajasthan, by estimating the total aboveground biomass contained in the forest. It turned into observed that the biomass, above ground comprising of stems, branches, and foliage, holds a total of 200 tons per hectare, foremost to a valued 100 tons of carbon being deposited per hectare aboveground. Acacia species consequently has the potential to play a significant function within the mitigation of climate change. The relation among the biomass, M, of each component (stems, branches, and foliage) and the diameter d, of the plant become also studied, by means of fitting allometric equations of the form M = αdβ. It was observed that all components fit this power law relation very well (R2 > 0.7), chiefly the stems (R2 > 0.8) and branches (R2 > 0.9) for which the relation is found to be almost linear.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1529
Author(s):  
Saurav Kalita ◽  
Hanna Karlsson Potter ◽  
Martin Weih ◽  
Christel Baum ◽  
Åke Nordberg ◽  
...  

Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 922 ◽  
Author(s):  
Rafaella C. Mayrinck ◽  
Colin P. Laroque ◽  
Beyhan Y. Amichev ◽  
Ken Van Rees

Shelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.


Sign in / Sign up

Export Citation Format

Share Document