scholarly journals Water Stress Regime of Irrigated Crops Based on Remote Sensing and Ground-Based Data

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1117
Author(s):  
Anatoly Mikhailovich Zeyliger ◽  
Olga Sergeevna Ermolaeva

In the past few decades, combinations of remote sensing technologies with ground-based methods have become available for use at the level of irrigated fields. These approaches allow an evaluation of crop water stress dynamics and irrigation water use efficiency. In this study, remotely sensed and ground-based data were used to develop a method of crop water stress assessment and analysis. Input datasets of this method were based on the results of ground-based and satellite monitoring in 2012. Required datasets were collected for 19 irrigated alfalfa crops in the second year of growth at three study sites located in Saratovskoe Zavolzhie (Saratov Oblast, Russia). Collected datasets were applied to calculate the dynamics of daily crop water stress coefficients for all studied crops, thereby characterizing the efficiency of crop irrigation. Accordingly, data on the crop yield of three harvests were used. An analysis of the results revealed a linear relationship between the crop yield of three cuts and the average value of the water stress coefficient. Further application of this method may be directed toward analyzing the effectiveness of irrigation practices and the operational management of agricultural crop irrigation.

2005 ◽  
Author(s):  
M. Susan Moran ◽  
Pablo J. Zarco-Tejada ◽  
Thomas R. Clarke

2020 ◽  
Author(s):  
Massimo Tolomio ◽  
Raffaele Casa

<p>Irrigation management decision support systems based on remote sensing and hydrological models need to find a balance between simplicity and accuracy in the definition of crop water stress thresholds when irrigation should be triggered. Among the most widely used crop models, which synthesize current mechanistic knowledge of crop water stress processes, there is a wide range of complexity that is worth exploring in order to improve the formalisms of current hydrological models.</p><p>In the present work, some of the most widely used crop models (chosen among those freely available and well documented) were examined in their description of crop water stress processes and irrigation thresholds definition. They are: APSIM, AQUACROP, CROPSYST, CROPWAT, DAISY, DSSAT, EPIC, STICS and WOFOST. Model manuals and scientific papers were reviewed to identify differences and similarities in the water stress functions related to crop growth.</p><p>A strict categorization of the model features is inappropriate, since the functions utilized are always at least slightly different and the models may focus on different features of the agroecosystem. Nevertheless, major similarities and differences among the models were found:</p><ol><li><em>The function of biomass growth.</em> AQUACROP and CROPWAT (both developed by FAO) are water-driven models (growth is directly related to transpiration). DAISY, DSSAT, EPIC, STICS and WOFOST are radiation-driven models (growth is related to radiation). APSIM and CROPSYST calculate both water- and radiation-driven biomass and keep the most limiting of these.</li> <li><em>The main variable used to calculate water stress indices.</em> AQUACROP, CROPWAT and WOFOST use stress coefficients that depend directly on the depletion status of plant available water (difference between field capacity and wilting point). CROPSYST, DAISY, DSSAT and EPIC calculate water stress on the ratio between actual transpiration (limited by roots and soil characteristics) and potential transpiration (weather-dependent). APSIM uses both approaches, depending on the specific crop and growth process targeted. STICS expresses the transpiration rate as a function of the available water content (in m<sup>3</sup>/m<sup>3</sup> above wilting point), and from this it calculates water stress indices.</li> <li><em>The influence of water stress indices on vegetative growth.</em> Water stress in CROPWAT, DAISY and WOFOST affects biomass growth, whereas in APSIM, AQUACROP, CROPSYST, DSSAT, EPIC and STICS multiple indices affect biomass growth and leaf expansion in different ways. The rationale behind the last approach is that as soil water uptake becomes more difficult, water stress slows down cells division and expansion (reducing the leaf expansion rate) before photosynthesis is reduced by stomatal closure.</li> </ol><p>The models were then calibrated for the maize and tomato crops using field and remote sensing data on crop yield, soil moisture, evapotranspiration (ET) and leaf area index (LAI), for two locations, respectively in Northern and Southern Italy (Calcinato and Capitanata). Simulations were then carried out and compared in terms of the optimal irrigation amounts calculated by the different models and predicted yields.</p>


2019 ◽  
Vol 11 (10) ◽  
pp. 1240 ◽  
Author(s):  
Max Gerhards ◽  
Martin Schlerf ◽  
Kaniska Mallick ◽  
Thomas Udelhoven

Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.


2020 ◽  
Vol 21 (5) ◽  
pp. 1121-1155 ◽  
Author(s):  
Shyamal S. Virnodkar ◽  
Vinod K. Pachghare ◽  
V. C. Patil ◽  
Sunil Kumar Jha

2021 ◽  
Author(s):  
Trupti Satapathy ◽  
Meenu Ramadas ◽  
Jörg Dietrich

<p>Among natural hazards, droughts are known to be very complex and disastrous owing to their creeping nature and widespread impacts. Specifically, the occurrence of agricultural droughts poses a threat to the productivity and socio-economic development of countries such as India. In this study, we propose a novel framework for agricultural drought monitoring integrating the different indicators of vegetation health, crop water stress and soil moisture, that are derived from remote sensing satellite data. The drought monitoring is performed over Odisha, India, for the period 2000-2019. Soil moisture and land surface temperature datasets from GLDAS Noah Land Surface Model and surface reflectance data from MODIS (MOD09GA) are used in this study. We compared the utility of popular indices: (i) soil moisture condition index, soil moisture deficit index and soil wetness deficit index to represent the soil moisture level; (ii) temperature condition index, vegetation condition index and normalised difference water index to indicate vegetation health; (iii) short wave infrared water stress to represent crop water stress condition. Correlation analyses between these indices and the seasonal crop yields are performed, and suitable indicators are chosen. The popular entropy weight method is then used to integrate the indices and develop the proposed composite drought index. The index is then used for monitoring the agricultural drought condition over the study area in drought periods. The proposed framework for week- to month-scale monitoring have potential applications in identification of agricultural drought hotspots, analysis of trends in drought severity, and drought early warning for agricultural water management.</p>


2015 ◽  
pp. 667-676 ◽  
Author(s):  
T. Bartzanas ◽  
N. Katsoulas ◽  
A. Elvanidi ◽  
K.P. Ferentinos ◽  
C. Kittas

2021 ◽  
Vol 13 (20) ◽  
pp. 4155
Author(s):  
Uzair Ahmad ◽  
Arturo Alvino ◽  
Stefano Marino

Currently, the world is facing high competition and market risks in improving yield, crop illness, and crop water stress. This could potentially be addressed by technological advancements in the form of precision systems, improvements in production, and through ensuring the sustainability of development. In this context, remote-sensing systems are fully equipped to address the complex and technical assessment of crop production, security, and crop water stress in an easy and efficient way. They provide simple and timely solutions for a diverse set of ecological zones. This critical review highlights novel methods for evaluating crop water stress and its correlation with certain measurable parameters, investigated using remote-sensing systems. Through an examination of previous literature, technologies, and data, we review the application of remote-sensing systems in the analysis of crop water stress. Initially, the study presents the relationship of relative water content (RWC) with equivalent water thickness (EWT) and soil moisture crop water stress. Evapotranspiration and sun-induced chlorophyll fluorescence are then analyzed in relation to crop water stress using remote sensing. Finally, the study presents various remote-sensing technologies used to detect crop water stress, including optical sensing systems, thermometric sensing systems, land-surface temperature-sensing systems, multispectral (spaceborne and airborne) sensing systems, hyperspectral sensing systems, and the LiDAR sensing system. The study also presents the future prospects of remote-sensing systems in analyzing crop water stress and how they could be further improved.


2013 ◽  
Vol 118 ◽  
pp. 79-86 ◽  
Author(s):  
N. Agam ◽  
Y. Cohen ◽  
J.A.J. Berni ◽  
V. Alchanatis ◽  
D. Kool ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document