scholarly journals Potential of Wild Relatives of Wheat: Ideal Genetic Resources for Future Breeding Programs

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1656
Author(s):  
Alireza Pour-Aboughadareh ◽  
Farzad Kianersi ◽  
Peter Poczai ◽  
Hoda Moradkhani

Among cereal crops, wheat has been identified as a major source for human food consumption. Wheat breeders require access to new genetic diversity resources to satisfy the demands of a growing human population for more food with a high quality that can be produced in variable environmental conditions. The close relatives of domesticated wheats represent an ideal gene pool for the use of breeders. The genera Aegilops and Triticum are known as the main gene pool of domesticated wheat, including numerous species with different and interesting genomic constitutions. According to the literature, each wild relative harbors useful alleles which can induce resistance to various environmental stresses. Furthermore, progress in genetic and biotechnology sciences has provided accurate information regarding the phylogenetic relationships among species, which consequently opened avenues to reconsider the potential of each wild relative and to provide a context for how we can employ them in future breeding programs. In the present review, we have sought to represent the level of genetic diversity among the wild relatives of wheat, as well as the breeding potential of each wild species that can be used in wheat-breeding programs.

2018 ◽  
Author(s):  
María-Dolores Rey ◽  
Azahara C. Martín ◽  
Mark Smedley ◽  
Sadiye Hayta ◽  
Wendy Harwood ◽  
...  

AbstractWild relatives provide an important source of useful traits in wheat breeding. Wheat and wild relative hybrids have been widely used in breeding programs to introduce such traits into wheat. However, successful introgression is limited by the low frequency of homoeologous crossover (CO) between wheat and wild relative chromosomes. Hybrids between wheat carrying a 70Mb deletion on chromosome 5B (ph1b) and wild relatives, have been exploited to increase the level of homoeologous CO, allowing chromosome exchange between their chromosomes. In ph1b-rye hybrids, CO number increases from a mean of 1 CO to 7 COs per cell. CO number can be further increased up to a mean of 12 COs per cell in these ph1b hybrids by treating the plants with Hoagland solution. More recently, it was shown that the major meiotic crossover gene ZIP4 on chromosome 5B (TaZIP4-B2) within the 70Mb deletion, was responsible for the restriction of homoeologous COs in wheat-wild relative hybrids, confirming the ph1b phenotype as a complete Tazip4-B2 deletion mutant (Tazip4-B2 ph1b). In this study, we have identified the particular Hoagland solution constituent responsible for the increased chiasma frequency in Tazip4-B2 ph1b mutant-rye hybrids and extended the analysis to Tazip4-B2 TILLING and CRISPR mutant-Ae variabilis hybrids. Chiasma frequency at meiotic metaphase I, in the absence of each Hoagland solution macronutrient (NH4 H2PO4, KNO3, Ca (NO3)2·4H2O or Mg SO4·7H2O) was analysed. A significant decrease in homoeologous CO frequency was observed when the Mg2+ ion was absent. A significant increase of homoeologous CO frequency was observed in all analysed hybrids, when plants were irrigated with a 1mM Mg2+ solution. These observations suggest a role for magnesium supplementation in improving the success of genetic material introgression from wild relatives into wheat.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra A. Bahri ◽  
Lamia Aouini ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
...  

Abstract Background Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. Results Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H′) of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H′ = 0.98), spike shape (H′ = 0.86), grain size (H′ = 0.94), grain shape (H′ = 0.87) and grain color (H′ = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. Conclusion Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 982
Author(s):  
Shivali Sharma ◽  
Albert Schulthess ◽  
Filippo Bassi ◽  
Ekaterina Badaeva ◽  
Kerstin Neumann ◽  
...  

Wheat (Triticum sp.) is one of the world’s most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.


1970 ◽  
Vol 7 ◽  
pp. 1-10
Author(s):  
BK Joshi ◽  
A Mudwari ◽  
MR Bhatta

Genetic diversity must be maintained and utilized for sustainable agriculture development. Theamount of genetic diversity in the country depends on the number and diversity of the originalancestors involved in the creation of a germplasm pool, wild relatives and existing landraces.The objective of this research was to study the diversity of wheat gene pool present in theNepalese bread wheat cultivars and landraces that could help for developing conservation andutilization strategy effectively. We examined the pedigrees of 35 Nepalese wheat cultivars andsurveyed the literature for distribution of landraces and wild relatives of wheat. Cultivatedlandraces of spring and winter type, wild landraces and diploid species of wheat are found inNepal. There are 35 improved wheat cultivars, 540 landraces and 10 wild relatives of wheat.Crosses between winter and spring wheat gene pools are far more common and offer a newsource of diversity. Mexico, India and Nepal are the origin countries for 35 cultivars. In Nepalfour cultivars were bred and developed using foreign landraces and maximum number ofcultivars was developed in Mexico. Lerma 52, first improved cereal variety to be released in thehistory of cereal breeding in Nepal was released in 1960. A total of 89 ancestors originated in 22different countries were used to develop these cultivars. Highest number of ancestors was fromIndia. Ancestors of both aestivum and durum species having winter, spring and intermediategrowth habit indicated the collection of wide gene pool. Most of the ancestors were aestivum(76.40%) and spring growth habit (57.31%). Modern varieties are replacing the landraces andimproved old varieties resulted in the genetic erosion. Therefore, in situ, on farm and ex situconservations are necessary for maintaining these genetic variations. Unutilization of locallandraces in breeding program may be the major factor that causes to accelerate the geneticerosion. Gene pool from these landraces along with international gene pool could make towardssuccess in developing high yielding cultivars with wide adaptability. In this study, cultivars andlandraces surveyed represent a wide range of variation for different areas of origin andadaptation.Key words: Ancestor; landrace; origin; wheat gene poolDOI: 10.3126/narj.v7i0.1859Nepal Agriculture Research Journal Vol.7 2006 pp.1-10


2021 ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra Amina Bahri ◽  
Lamia Aouini ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
...  

Abstract Background: Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. Results: Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H') of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H' = 0.98), spike shape (H' = 0.86), grain size (H' = 0.94), grain shape (H' = 0.87) and grain color (H' = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. Conclusion: Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucía De la Rosa ◽  
María Isabel López-Román ◽  
Juan M. González ◽  
Encarnación Zambrana ◽  
Teresa Marcos-Prado ◽  
...  

Common vetch (Vicia sativa L.) is a legume used for animal feed because of its high protein content and great capacity for nitrogen fixation, making this crop relevant in sustainable agriculture. The Spanish vetch collection, conserved at the Spanish Plant Genetic Resources Center (CRF), is one of the largest collections of this species worldwide, including landraces, wild relatives mainly collected in Spain, and commercial cultivars, but also accessions of international origin. The analysis of the genetic diversity of this material, whose genome has not been sequenced yet, and the assembly of a representative collection could play a pivotal role in conserving and exploiting these genetic resources in breeding programs mainly in those focused on consequences and demands of climate change. In this work, a set of 14 simple sequence repeat (SSR) reference alleles for genetic diversity analysis of the CRF vetch collection has been developed, used for genotyping more than 545 common vetch accessions from all over the world and validated. All the tested markers were polymorphic for the analyzed accessions. Overall, at least 86 different loci were identified with 2–11 alleles per locus with an average of 6.1 alleles per locus. Also, the analyses of the generated SSR database support that most of these SSR markers are transferable across closely related species of Vicia genus. Analysis of molecular variance revealed that wild relatives have a higher genetic diversity than landraces. However, cultivars have similar diversity than landraces, indicating that genetic variability has been barely lost due to the breeding of this legume. Low differences of genetic variations between Spanish and non-Spanish accessions have been observed, suggesting a high degree of diversity within Spanish genotypes, which provide 95% of the total genetic variation, so we have focused our efforts on characterizing genotypes of Spanish origin that were further studied using storage protein profiles. Based on SSR, seed protein profiles, and agromorphological and passport data, a vetch core collection (VCC) containing 47 V. sativa accessions of Spanish origin has been established. In this collection, the characterization has been expanded using ISSR markers, and it has been reevaluated with new agromorphological data, including drought tolerance characters. This VCC presents a minimum loss of genetic diversity concerning the total collection and constitutes an invaluable material that can be used in future breeding programs for direct use in a resilient agricultural system.


Genetika ◽  
2014 ◽  
Vol 46 (2) ◽  
pp. 537-543 ◽  
Author(s):  
Mahwish Kanwal ◽  
F Farhatullah ◽  
Ashiq Rabbani ◽  
Sidra Iqbal ◽  
Laila Fayyaz ◽  
...  

Brassica species are vulnerable to narrow genetic base due to the ignorance of their wild relatives which possess many superior characters. This study was aimed to explore the genetic diversity in five Brassica species from U triangle as well as in their wild relative Eruca sativa. For the complete insight of genetic diversity, four accessions, each from five species of genus Brassica along with one species of Eruca collected from different geographical locations (exotic and indigenous) were selected. Six yield associated parameters viz., primary branches plant-1, plant height, main raceme length, silique length, silique width and silique main raceme-1 were studied. Highly significant variations among all species were observed. Mean performance showed that wild relative E. sativa was superior for primary branches plant -1 and plant height, which are the main yield associated traits. In case of Brassica species, B. campestris gave the lengthiest main racemes, B. nigra produced more silique main raceme-1 and B. carinata produced the longest and widest silique.


Genetika ◽  
2018 ◽  
Vol 50 (1) ◽  
pp. 131-141 ◽  
Author(s):  
Marzeih Salehi ◽  
Ahmad Arzani ◽  
Majid Talebi ◽  
Asad Rokhzadi

Wild relatives of wheat are potential sources of valuable genetic materials for wheat improvement. Knowledge of the genetic diversity of wild relative species of wheat is crucial for their conservation and utilization. The objective of the current study was to investigate the genetic diversity of inter and intra species of Triticum monococcum ssp. aegilopoides (AA), Aegilops tauschii (DD) and Aegilops cylindrica (CCDD) originating from northern and western Iran. Thirty microsatellite (SSR) markers belonging to A, B, C and D genomes were used for analysis and 20 found to be polymorphic within and between species. The SSR markers generated a total number of 180 alleles with an average of 9 alleles per locus in 21 genotypes. The genetic diversity for all loci ranged from 0.74-0.90 with an average of 0.83. The highest genetic diversity was estimated for Xgwm186 and Xgwm205 which the latter could amplify in the A, D and CD genomes of T. monococcum, Ae. tauschii and Ae. cylindrica, respectively. In addition, the number of bands generated by Xgwm205 along with other four markers in Ae. cylindrica (CD) was two-fold than that of Ae. tauschii (D). Polymorphic information content ranged from 0.7-0.89 with an average of 0.82. The dendrogram obtained from the neighbor-joining method divided the genotypes of the three species into three distinctive groups. It can be concluded that SSR markers can be useful not only in differentiating wild species of wheat possessing A, D and C genomes, but also in assessing the genetic variation of genotypes within these species.


Sign in / Sign up

Export Citation Format

Share Document