scholarly journals Exogenous Glomalin-Related Soil Proteins Differentially Regulate Soil Properties in Trifoliate Orange

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1896
Author(s):  
Rui-Cheng Liu ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

Glomalin-related soil protein (GRSP) is a specific glycoprotein secreted into the soil by hyphae and spores of arbuscular mycorrhizal fungi that have many potential functions. It is not clear whether exogenous GRSP has an effect on plant growth and soil properties or whether the effects are related to the type of GRSP used. In this study, trifoliate orange (Poncirus trifoliata L. Raf.) seedlings were used to analyze the effects of easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) at a quarter-, half-, and full-strength concentration on shoot and root biomass as well as soil properties The results showed that, at different strengths, exogenous EE-GRSR significantly increased shoot and root biomass compared to the control, which displayed the most significant effects from the half-strength EE-GRSP. In contrast, DE-GRSP, at various strengths, significantly reduced shoot and root biomass. Furthermore, the application of exogenous EE-GRSP stimulated soil water-stable aggregate (WSA) content at 2–4 mm and 0.5–1 mm sizes, while DE-GRSP strongly reduced WSA content at the 2–4 mm, 1–2 mm, 0.5–1 mm, and 0.25–0.5 mm sizes, consequently leading to an increase or decrease in the WSA stability, according to the mean weight diameter. However, exogenous EE-GRSP decreased soil pH and DE-GRSP increased it, which was related to WSA stability. Exogenous EE-GRSP almost significantly increased soil acidic, neutral, and alkaline phosphatase activity at different strengths, while exogenous DE-GRSP, also at different strengths, significantly inhibited soil acidic phosphatase activity. The application of both exogenous EE-GRSP and DE-GRSP increased the organic carbon content of the soil. This study concluded that exogenous GRSP exerted differential effects on plant biomass and soil properties, and EE-GRSP can be considered as a soil stimulant for use in citrus plants. To our knowledge, this is the first report on the negative effects of exogenous DE-GRSP on plant biomass and soil properties.

2011 ◽  
Vol 39 (2) ◽  
pp. 64 ◽  
Author(s):  
Ying-Ning ZOU ◽  
Qiang-Sheng WU

Citrus plants are sensitive to salinity, and thus employing new approaches to alleviate salt damage are necessary. The present study evaluated the effect of two arbuscular mycorrhizal fungi (AMF), Glomus mosseae and G. versiforme, on leaf osmotic adjustment of trifoliate orange (Poncirus trifoliata) seedings exposed to 100 mM NaCl. Salinity significantly inhibited mycorrhizal colonization, plant biomass and leaf relative water content, whereas the reduce of plant biomass was notably alleviated by the mycorrhizal colonization. Mycorrhizal seedlings exhibited significantly lower Na+ and Ca2+ concentrations, whilst also recorded higher K+ concentration and K+/Na+, Ca2+/Na+ and Mg2+/Na+ ratios at both salinity levels. Under salinity stress, mycorrhizal symbiosis markedly decreased sucrose concentrations of leaves and also increased glucose, fructose and proline concentrations of leaves. The results suggest that arbuscular mycorrhizas improved leaf osmotic adjustment responses of the seedlings to salt stress, thus enhancing salt tolerance of mycorrhizal plants.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


2018 ◽  
Vol 46 (1) ◽  
pp. 270-276 ◽  
Author(s):  
Fei ZHANG ◽  
Jia-Dong HE ◽  
Qiu-Dan NI ◽  
Qiang-Sheng WU ◽  
Ying-Ning ZOU

Sucrose and proline metabolisms are often associated with drought tolerance of plants. This study was conducted to investigate the effects of two arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae and Paraglomus occultum) on root biomass, lateral root number, root sucrose and proline metabolisms in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) or drought stress (DS). All the AMF treatments significantly increased root dry weight, taproot length, and the number of lateral roots in 1st, 2nd, and 3rd class under WW and DS. Mycorrhizal seedlings conferred considerably higher fructose and glucose concentrations but lower sucrose accumulation, regardless of soil water status. Under DS, F. mosseae treatment significantly increased root sucrose synthase (SS, degradative direction) and sucrose phosphate synthase (SPS) activity but deceased root acid invertase (AI) and neutral invertase (NI) activity, and P. occultum inoculation markedly increased root AI, NI, SS, and SPS activities. AMF treatments led to a lower proline accumulation in roots, in company with lower activities of Δ1-pyrroline-5-carboxylate synthetase (P5CS), δ-ornithine aminotransferase (OAT), Δ1-pyrroline-5-carboxylate reductase (P5CR), and proline dehydrogenase (ProDH) in roots. It appears that the AM symbiosis induced greater root development and sucrose and proline metabolisms to adapt DS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Khondoker M. G. Dastogeer ◽  
Mst Ishrat Zahan ◽  
Md. Tahjib-Ul-Arif ◽  
Mst Arjina Akter ◽  
Shin Okazaki

Soil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs. salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and in the presence of varying levels of NaCl salinity in soil, and the differences became more prominent as the salinity stress increased. Categorical analyses revealed that the accumulation of plant shoot and root biomass was influenced by various factors, such as the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity treatments. More specifically, the effect of Funneliformis on plant shoot biomass was more prominent as the salinity level increased. Additionally, under stress, AMF increased shoot biomass more on plants that are dicots, plants that have nodulation capacity and plants that use the C3 plant photosynthetic pathway. When plants experienced short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time, we observed significant phylogenetic signals in plants and mycorrhizal species in terms of their shoot biomass response to moderate levels of salinity stress, i.e., closely related plants had more similar responses, and closely related mycorrhizal species had similar effects than distantly related species. In contrast, the root biomass accumulation trait was related to fungal phylogeny only under non-stressed conditions and not under stressed conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF improved the water status, photosynthetic efficiency and uptake of Ca and K in plants irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the salinity increased, the trend showed a decline but had a clear upturn as the salinity stress increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD), and superoxide dismutase (SOD) as well as the proline content changed due to AMF treatment under salinity stress. The accumulation of proline and catalase (CAT) was observed only when plants experienced moderate salinity stress, but peroxidase (POD) and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth and physiology, and their effects were more notable when their host plants experienced salinity stress and were influenced by plant and fungal traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sheng-Min Liang ◽  
Fei Zhang ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
Qiang-Sheng Wu

Soil water deficit seriously affects crop production, and soil arbuscular mycorrhizal fungi (AMF) enhance drought tolerance in crops by unclear mechanisms. Our study aimed to analyze changes in non-targeted metabolomics in roots of trifoliate orange (Poncirus trifoliata) seedlings under well-watered and soil drought after inoculation with Rhizophagus intraradices, with a focus on terpenoid profile. Root mycorrhizal fungal colonization varied from 70% under soil drought to 85% under soil well-watered, and shoot and root biomass was increased by AMF inoculation, independent of soil water regimes. A total of 643 secondary metabolites in roots were examined, and 210 and 105 differential metabolites were regulated by mycorrhizal fungi under normal water and drought stress, along with 88 and 17 metabolites being up-and down-regulated under drought conditions, respectively. KEGG annotation analysis of differential metabolites showed 38 and 36 metabolic pathways by mycorrhizal inoculation under normal water and drought stress conditions, respectively. Among them, 33 metabolic pathways for mycorrhization under drought stress included purine metabolism, pyrimidine metabolism, alanine, aspartate and glutamate metabolism, etc. We also identified 10 terpenoid substances, namely albiflorin, artemisinin (−)-camphor, capsanthin, β-caryophyllene, limonin, phytol, roseoside, sweroside, and α-terpineol. AMF colonization triggered the decline of almost all differential terpenoids, except for β-caryophyllene, which was up-regulated by mycorrhizas under drought, suggesting potential increase in volatile organic compounds to initiate plant defense responses. This study provided an overview of AMF-induced metabolites and metabolic pathways in plants under drought, focusing on the terpenoid profile.


2018 ◽  
Vol 46 (2) ◽  
pp. 365-370 ◽  
Author(s):  
Li TIAN ◽  
Yan LI ◽  
Qiang-Sheng WU

Arbuscular mycorrhizas (AMs) need the carbohydrates from host plants for its growth, whereas it is not clear whether exogenous carbon affects mycorrhizal roles. A two-chambered rootbox was divided into root + hyphae chamber and hyphae chamber (free of roots) by 37-μm nylon mesh, in which trifoliate orange (Poncirus trifoliata) seedlings and Funneliformis mosseae were applied into root + hyphae chamber, and exogenous 40 mmol/L fructose, glucose and sucrose was applied to hyphae chamber. Application of exogenous sugars dramatically elevated root mycorrhizal colonization. Sole arbuscular mycorrhizal fungi (AMF) inoculation significantly promoted plant growth and root morphology than non-AMF treatment. Mycorrhiza-improved plant growth and root modification could be enlarged by exogenous carbon, especially fructose. Exogenous carbon markedly increased root fructose, glucose and sucrose accumulation in mycorrhizal plants, especially sucrose. Exogenous fructose significantly reduced leaf and root sucrose synthase (SS) activity in synthesis direction and increased them in cleavage direction in AMF seedlings. Exogenous glucose and sucrose heavily elevated root SS activity of mycorrhizal seedlings in synthesis and cleavage direction and reduced leaf SS activity in synthesis direction. Leaf acid invertase (AI) and neutral invertase (NI) activities of mycorrhizal seedlings were decreased by exogenous carbon, except sucrose in NI. Exogenous fructose significantly increased root AI and NI activity in mycorrhizal plants. These results implied that mycorrhizal inoculation represented positive effects on plant growth, root morphology, and sucrose metabolism of trifoliate orange, which could be magnified further by exogenous carbon, especially fructose.


2018 ◽  
Vol 53 (8) ◽  
pp. 943-951 ◽  
Author(s):  
Luciane Reis Sales ◽  
Geanderson Nascimento da Silva ◽  
Raphael Henrique da Silva Siqueira ◽  
Marco Aurélio Carbone Carneiro ◽  
Valdemar Faquin

Abstract: The objective of this work was to evaluate the influence of arbuscular mycorrhizal fungi (AMF) on the accumulation of shoot and root biomass and on the nutrient contents of Urochloa decumbens grown in soils with different densities. The experiment was carried out in a randomized complete block design, in a 4x2 factorial arrangement: four soil densities (1.0, 1.2, 1.4, and 1.6 kg dm-3) with and without inoculation of AMF, with four replicates. The biomass accumulation (dry matter weight of shoot and roots) and macro- and micronutrient contents of U. decumbens were determined at different soil densities. The mycorrhizal colonization of the plants was evaluated, and the number of mycorrhizal spores present in the soil was determined. The biomass accumulation of shoot and roots and macro- and micronutrient contents, as well as the number of mycorrhizal spores in the soil, were negatively affected by the increase in soil density. Only root biomass increased with AMF inoculation. There was no interaction between soil density and inoculation for shoot and root biomass accumulation. Arbuscular mycorrhizal fungi influence the accumulation of biomass in the roots and of N and Ca contents in the shoots of Urochloa decumbens even at the highest soil densities.


2018 ◽  
Vol 6 (2) ◽  
pp. 37-43
Author(s):  
Lalnun thari ◽  
◽  
John Zothanzama

The study was conducted to assess the association of Arbuscular Mycorrhizal Fungi (AMF) in maize from three different jhum fallows. The jhum fallows are of three different years i.e., 1-3 years, 4-6 years and 7-10 years. Root samples were taken from maize to study colonization of AMF and spores were recovered from the rhizosphere region of the roots. It was observed that soil properties, rainfall pattern as well as human exploitation affect AMF colonization of roots.


Sign in / Sign up

Export Citation Format

Share Document