scholarly journals Wheat Density Alters but Does Not Repress the Expression of a Fluroxypyr-Resistant Kochia (Bassia scoparia) Phenotype

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2160
Author(s):  
Charles M. Geddes ◽  
Michael T. Kimmins

Dose-response experiments for confirmation of herbicide-resistant weeds are almost always conducted using weed monocultures, thereby ignoring the interaction of interspecific plant interference with herbicide efficacy. Controlled-environment dose-response bioassays were conducted using three kochia [Bassia scoparia (L.) A.J. Scott] populations with four spring wheat (Triticum aestivum L.) densities (0, 200, 400, and 600 plants m−2) to determine how increasing intensity of interspecific plant interference altered the fluroxypyr dose-response relationship of resistant and susceptible kochia. The resistant population exhibited 10.8-, 15.0-, 7.0-, and 8.1-fold resistance to fluroxypyr in the absence of crop interference based on plant survival, biomass fresh weight, and visible control at two and four weeks after application, respectively. Increased wheat densities suppressed fluroxypyr-resistant kochia the greatest, resulting in a linear reduction in the fluroxypyr rate causing 50% plant mortality (LD50) and visible control (ED50) for the resistant but not the susceptible populations. This reduced the expression of fluroxypyr resistance based on kochia plant survival (from 10.8- to 4.3-fold resistance) and visible control (from 8.1- to 4.6-fold resistance) as wheat density increased from 0 to 600 plants m−2. Therefore, enhanced interspecific plant interference caused by increased wheat densities altered but did not repress the expression of fluroxypyr resistance in kochia.

Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 379-384 ◽  
Author(s):  
Mark L. Bernards ◽  
Roberto J. Crespo ◽  
Greg R. Kruger ◽  
Roch Gaussoin ◽  
Patrick J. Tranel

A waterhemp population from a native-grass seed production field in Nebraska was no longer effectively controlled by 2,4-D. Seed was collected from the site, and dose-response studies were conducted to determine if this population was herbicide resistant. In the greenhouse, plants from the putative resistant and a susceptible waterhemp population were treated with 0, 18, 35, 70, 140, 280, 560, 1,120, or 2,240 g ae ha−12,4-D. Visual injury estimates (I) were made 28 d after treatment (DAT), and plants were harvested and dry weights (GR) measured. The putative resistant population was approximately 10-fold more resistant to 2,4-D (R:S ratio) than the susceptible population based on both I50(50% visual injury) and GR50(50% reduction in dry weight) values. The R:S ratio increased to 19 and 111 as the data were extrapolated to I90and GR90estimates, respectively. GR50doses of 995 g ha−1for the resistant and 109 g ha−1for the susceptible populations were estimated. A field dose-response study was conducted at the suspected resistant site with 2,4-D doses of 0, 140, 280, 560, 1,120, 2,240, 4,480, 8,960, 17,920, and 35,840 g ha−1. At 28 DAT, visual injury estimates were 44% in plots treated with 35,840 g ha−1. Some plants treated with the highest rate recovered and produced seed. Plants from the resistant and susceptible populations were also treated with 0, 9, 18, 35, 70, 140, 280, 560, or 1,120 g ae ha−1dicamba in greenhouse bioassays. The 2,4-D resistant population was threefold less sensitive to dicamba based on I50estimates but less than twofold less sensitive based on GR50estimates. The synthetic auxins are the sixth mechanism-of-action herbicide group to which waterhemp has evolved resistance.


1988 ◽  
Vol 7 (2) ◽  
pp. 129-132 ◽  
Author(s):  
J.C. Sherlock ◽  
M.J. Quinn

Wide discrepancies have been observed between controlled and uncontrolled intake studies of the relationship of blood mercury concentration to intake of mercury. The probable reason for the apparent discrepancies is that the within-subject variation of mercury intake in the uncontrolled studies was almost certainly considerably larger than the within-subject variation in blood mercury concentration; in these circumstances, the apparent slope obtained from a linear regression of blood mercury on intake will invariably be much smaller than the true slope. Studies of the exposure or intake of any substance should therefore include a consideration of the likely within-subject variation in the exposure or intake relative to that in the effect.


2016 ◽  
Vol 31 (3) ◽  
pp. 234-241 ◽  
Author(s):  
Saki Nakamura ◽  
Nao Watanabe ◽  
Naoki Yoshimura ◽  
Sayaka Ozawa ◽  
Keiichi Hirono ◽  
...  

1994 ◽  
Vol 81 (SUPPLEMENT) ◽  
pp. A1351
Author(s):  
M. F. Watcha ◽  
P. J. Bras ◽  
J. Pennant ◽  
G. Cieslak ◽  
D. Burnette

2017 ◽  
Vol 91 (12) ◽  
pp. 3961-3989 ◽  
Author(s):  
Steffen Schneider ◽  
Karma C. Fussell ◽  
Stephanie Melching-Kollmuss ◽  
Roland Buesen ◽  
Sibylle Gröters ◽  
...  

2015 ◽  
Vol 123 (6) ◽  
pp. 1337-1349 ◽  
Author(s):  
Friederike Haerter ◽  
Jeroen Cedric Peter Simons ◽  
Urs Foerster ◽  
Ingrid Moreno Duarte ◽  
Daniel Diaz-Gil ◽  
...  

Abstract Background The authors evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular-blocking agents (NMBAs) by binding and inactivation. Methods The dose–response relationship of drugs to reverse vecuronium-, rocuronium-, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n = 34; phrenic nerve hemidiaphragm preparation), and in vivo (n = 108; quadriceps femoris muscle of the rat). Cumulative dose–response curves of calabadions, neostigmine, or sugammadex were created ex vivo at a steady-state deep NMB. In living rats, the authors studied the dose–response relationship of the test drugs to reverse deep block under physiologic conditions, and they measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). The results of urine analysis (proton nuclear magnetic resonance), competition binding assays, and ex vivo study obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared with that of sugammadex. Calabadion 2 was eliminated renally and did not affect blood pressure or heart rate. Conclusions Calabadion 2 reverses NMB induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e., faster than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats.


Sign in / Sign up

Export Citation Format

Share Document