scholarly journals Bioinformatic-Based Approaches for Disease-Resistance Gene Discovery in Plants

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2259
Author(s):  
Andrea Fernandez-Gutierrez ◽  
Juan J. Gutierrez-Gonzalez

Pathogens are among the most limiting factors for crop success and expansion. Thus, finding the underlying genetic cause of pathogen resistance is the main goal for plant geneticists. The activation of a plant’s immune system is mediated by the presence of specific receptors known as disease-resistance genes (R genes). Typical R genes encode functional immune receptors with nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) domains, making the NBS-LRRs the largest family of plant resistance genes. Establishing host resistance is crucial for plant growth and crop yield but also for reducing pesticide use. In this regard, pyramiding R genes is thought to be the most ecologically friendly way to enhance the durability of resistance. To accomplish this, researchers must first identify the related genes, or linked markers, within the genomes. However, the duplicated nature, with the presence of frequent paralogues, and clustered characteristic of NLRs make them difficult to predict with the classic automatic gene annotation pipelines. In the last several years, efforts have been made to develop new methods leading to a proliferation of reports on cloned genes. Herein, we review the bioinformatic tools to assist the discovery of R genes in plants, focusing on well-established pipelines with an important computer-based component.

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1961-1977
Author(s):  
Michelle A Graham ◽  
Laura Fredrick Marek ◽  
Randy C Shoemaker

Abstract PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar “Williams 82” [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca2+-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Randall F Warren ◽  
Peter M Merritt ◽  
Eric Holub ◽  
Roger W Innes

Abstract The RPS5 disease resistance gene of Arabidopsis mediates recognition of Pseudomonas syringae strains that possess the avirulence gene avrPphB. By screening for loss of RPS5-specified resistance, we identified five pbs (avrPphB susceptible) mutants that represent three different genes. Mutations in PBS1 completely blocked RPS5-mediated resistance, but had little to no effect on resistance specified by other disease resistance genes, suggesting that PBS1 facilitates recognition of the avrPphB protein. The pbs2 mutation dramatically reduced resistance mediated by the RPS5 and RPM1 resistance genes, but had no detectable effect on resistance mediated by RPS4 and had an intermediate effect on RPS2-mediated resistance. The pbs2 mutation also had varying effects on resistance mediated by seven different RPP (recognition of Peronospora parasitica) genes. These data indicate that the PBS2 protein functions in a pathway that is important only to a subset of disease-resistance genes. The pbs3 mutation partially suppressed all four P. syringae-resistance genes (RPS5, RPM1, RPS2, and RPS4), and it had weak-to-intermediate effects on the RPP genes. In addition, the pbs3 mutant allowed higher bacterial growth in response to a virulent strain of P. syringae, indicating that the PBS3 gene product functions in a pathway involved in restricting the spread of both virulent and avirulent pathogens. The pbs mutations are recessive and have been mapped to chromosomes I (pbs2) and V (pbs1 and pbs3).


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 659-665 ◽  
Author(s):  
Evans S. Lagudah ◽  
Odile Moullet ◽  
Rudi Appels

The Cre3 gene confers a high level of resistance to the root endoparasitic nematode Heterodera avenae in wheat. A DNA marker cosegregating with H. avenae resistance was used as an entry point for map-based cloning of a disease resistance gene family at the Cre3 locus. Two related gene sequences have been analysed at the Cre3 locus. One, identified as a cDNA clone, encodes a polypeptide with a nucleotide binding site (NBS) and a leucine-rich region; this member of the disease resistance gene family is expressed in roots. A second Cre3 gene sequence, cloned as genomic DNA, appears to be a pseudogene, with a frame shift caused by a deletion event. These two genes, related to members of the cytoplasmic NBS – leucine rich repeat class of plant disease resistance genes were physically mapped to the distal 0.06 fragment of the long arm of wheat chromosome 2D and cosegregated with nematode resistance.Key words: cereal cyst nematode, disease resistance genes, nucleotide-binding site, leucine-rich repeat.


Genome ◽  
2000 ◽  
Vol 43 (3) ◽  
pp. 452-460 ◽  
Author(s):  
D Sillito ◽  
I AP Parkin ◽  
R Mayerhofer ◽  
D J Lydiate ◽  
A G Good

Common structural and amino acid motifs among cloned plant disease-resistance genes (R genes), have made it possible to identify putative disease-resistance sequences based on DNA sequence identity. Mapping of such R-gene homologues will identify candidate disease-resistance loci to expedite map-based cloning strategies in complex crop genomes. Arabidopsis thaliana expressed sequence tags (ESTs) with homology to cloned plant R genes (R-ESTs), were mapped in both A. thaliana and Brassica napus to identify candidate R-gene loci and investigate intergenomic collinearity. Brassica R-gene homologous sequences were also mapped in B. napus. In total, 103 R-EST loci and 36 Brassica R-gene homologous loci were positioned on the N-fo-61-9 B. napus genetic map, and 48 R-EST loci positioned on the Columbia × Landsberg A. thaliana map. The mapped loci identified collinear regions between Arabidopsis and Brassica which had been observed in previous comparative mapping studies; the detection of syntenic genomic regions indicated that there was no apparent rapid divergence of the identified genomic regions housing the R-EST loci.Key words: RFLP mapping, candidate R genes, R-gene homologues, genomic collinearity, Arabidopsis ESTs.


2021 ◽  
Author(s):  
Philipp E Bayer ◽  
Haifei Hu ◽  
Jakob Petereit ◽  
Rajeev K Varshney ◽  
Babu Valliyodan ◽  
...  

The availability of increasing quantities of crop pangenome data permits the detailed association of gene content with agronomic traits. Here, we investigate disease resistance gene content of diverse soybean cultivars and report a significant negative correlation between the number of NLR resistance (R) genes and yield. We find no association between R-genes with seed weight, oil or protein content, and we find no correlation between yield and the number of RLK, RLP genes, or the total number of genes. These results suggest that recent yield improvement in soybean may be partially associated with the selective loss of NLR genes. Three quarters of soybean NLR genes do not show presence/absence variation, limiting the ability to select for their absence, and so the deletion or disabling of select NLR genes may support future yield improvement.


1998 ◽  
Vol 11 (10) ◽  
pp. 968-978 ◽  
Author(s):  
N. C. Collins ◽  
C. A. Webb ◽  
S. Seah ◽  
J. G. Ellis ◽  
S. H. Hulbert ◽  
...  

Many of the plant disease resistance genes that have been isolated encode proteins with a putative nucleotide binding site and leucine-rich repeats (NBS-LRR resistance genes). Oligonucleotide primers based on conserved motifs in and around the NBS of known NBS-LRR resistance proteins were used to amplify sequences from maize genomic DNA by polymerase chain reaction (PCR). Eleven classes of non-cross-hybridizing sequences were obtained that had predicted products with high levels of amino acid identity to NBS-LRR resistance proteins. These maize resistance gene analogs (RGAs) and one RGA clone obtained previously from wheat were used as probes to map 20 restriction fragment length polymorphism (RFLP) loci in maize. Some RFLPs were shown to map to genomic regions containing virus and fungus resistance genes. Perfect co-segregation was observed between RGA loci and the rust resistance loci rp1 and rp3. The RGA probe associated with rp1 also detected deletion events in several rp1 mutants. These data strongly suggest that some of the RGA clones may hybridize to resistance genes.


2001 ◽  
Vol 14 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Michael J. Axtell ◽  
Timothy W. McNellis ◽  
Mary Beth Mudgett ◽  
Caroline S. Hsu ◽  
Brian J. Staskawicz

Plants have evolved a large number of disease resistance genes that encode proteins containing conserved structural motifs that function to recognize pathogen signals and to initiate defense responses. The Arabidopsis RPS2 gene encodes a protein representative of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of plant resistance proteins. RPS2 specifically recognizes Pseudomonas syringae pv. tomato strains expressing the avrRpt2 gene and initiates defense responses to bacteria carrying avrRpt2, including a hypersensitive cell death response (HR). We present an in planta mutagenesis experiment that resulted in the isolation of a series of rps2 and avrRpt2 alleles that disrupt the RPS2-avrRpt2 gene-for-gene interaction. Seven novel avrRpt2 alleles incapable of eliciting an RPS2-dependent HR all encode proteins with lesions in the C-terminal portion of AvrRpt2 previously shown to be sufficient for RPS2 recognition. Ten novel rps2 alleles were characterized with mutations in the NBS and the LRR. Several of these alleles code for point mutations in motifs that are conserved among NBS-LRR resistance genes, including the third LRR, which suggests the importance of these motifs for resistance gene function.


Sign in / Sign up

Export Citation Format

Share Document