scholarly journals Growth and Flowering Characteristics of Oncidium Gower Ramsey Varieties under Various Fertilizer Management Treatments in Response to Light Intensities

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2549
Author(s):  
Chia-Man Chang ◽  
Kuan-Hung Lin ◽  
Meng-Yuan Huang ◽  
Chung-I Chen ◽  
Mei-Li Hsueh ◽  
...  

Oncidium are grown worldwide and play important economic roles. The objective of this study was to investigate the pseudobulb growth and flowering characteristics of the two Oncidesa Gower Ramsey cultivars, ‘Honey Angel (HA)’ and ‘Golden Star (GS)’, cultivated under 3 kinds of fertilizer treatments in response to 40% light intensity (LI-40) and 30% light intensity (LI-30, as control) photosynthetic photon flux density over a 5-month period. The conventional-fertilizer (CF) treatment, as a control, consisted of a liquid manure solution of N:K = 1:1.12, mixed with 7.8% N, 0.8% P2O5, 0.3% K2O, and 57.3% of organic matter that was foliage-applied to plants twice weekly. The stage-fertilizer (SF) treatment consisted of N:P:K = 1:1:5 foliage-applied to plants in an unsheathing pseudobulb stage until reaching inflorescence, followed by N:P:K = 1:1:1 application until the end of the experiment. The fortnight-fertilizer (FF) treatment consisted of N:P:K = 1:1:5 and N:P:K = 1:1:1 with interval-rotate foliage-application to plants weekly until the end of the experiment. Pseudobulb length (PL), pseudobulb major axis (PW), and pseudobulb minor axis (PT), and inflorescence length (FL), number of pedicel (FB), and floret numbers (FN) per plant were recorded and calculated from two months after pseudobulb maturity until the end of the five-month experimental period. The GS variety significantly increased PL when treated with CF and FF compared to HA, and GS treated with CF under LI-30 exhibited the longest PL at 81.65 mm. PW increased as LI increased under FF treatment, and the largest PW was observed in GS treated with FF under LI-40. A maximal and significant increase in PT occurred in LI-40 compared to LI-30 under the CF treatment. GS had a significantly higher FL compared to HA treated with CF, and the longest FL was detected in GS under LI-30. HA had a significantly higher FB and FN under LI-40 than under LI-30, and the highest number of FB and FN in HA occurred when it was treated with CF and SF, respectively. Precision management of fertilization treatments in response to LI can maximize pseudobulb growth, development, and flowering quality in Oncidesa species.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bin Liu ◽  
Shuo Zhao ◽  
Pengli Li ◽  
Yilu Yin ◽  
Qingliang Niu ◽  
...  

AbstractIn plants, alternative splicing (AS) is markedly induced in response to environmental stresses, but it is unclear why plants generate multiple transcripts under stress conditions. In this study, RNA-seq was performed to identify AS events in cucumber seedlings grown under different light intensities. We identified a novel transcript of the gibberellin (GA)-deactivating enzyme Gibberellin 2-beta-dioxygenase 8 (CsGA2ox8). Compared with canonical CsGA2ox8.1, the CsGA2ox8.2 isoform presented intron retention between the second and third exons. Functional analysis proved that the transcript of CsGA2ox8.1 but not CsGA2ox8.2 played a role in the deactivation of bioactive GAs. Moreover, expression analysis demonstrated that both transcripts were upregulated by increased light intensity, but the expression level of CsGA2ox8.1 increased slowly when the light intensity was >400 µmol·m−2·s−1 PPFD (photosynthetic photon flux density), while the CsGA2ox8.2 transcript levels increased rapidly when the light intensity was >200 µmol·m−2·s−1 PPFD. Our findings provide evidence that plants might finely tune their GA levels by buffering against the normal transcripts of CsGA2ox8 through AS.


2019 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Megumi Yamashita ◽  
Mitsunori Yoshimura

A knowledge of photosynthetic photon flux density (PPFD: μmol m−2 s−1) is crucial for understanding plant physiological processes in photosynthesis. The diffuse component of the global PPFD on a short timescale is required for the accurate modeling of photosynthesis. However, because the PPFD is difficult to determine, it is generally estimated from incident solar radiation (SR: W m−2), which is routinely observed worldwide. To estimate the PPFD from the SR, photosynthetically active radiation (PAR: W m−2) is separated from the SR using the PAR fraction (PF; PAR/SR: unitless), and the PAR is then converted into the PPFD using the quanta-to-energy ratio (Q/E: μmol J−1). In this procedure, PF and Q/E are considered constant values; however, it was reported recently that PF and Q/E vary under different sky conditions. Moreover, the diffuse ratio (DR) is needed to distinguish the diffuse component in the global PAR, and it is known that the DR varies depending on sky conditions. Ground-based whole-sky images can be used for sky-condition monitoring, instead of human-eye interpretation. This study developed a methodology for estimating the global and diffuse PPFD using whole-sky images. Sky-condition factors were derived through whole-sky image processing, and the effects of these factors on the PF, the Q/E of global and diffuse PAR, and the DR were examined. We estimated the global and diffuse PPFD with instantaneous values using the sky-condition factors under various sky conditions, based on which the detailed effects of the sky-condition factors on PF, Q/E, and DR were clarified. The results of the PPFD estimations had small bias errors of approximately +0.3% and +3.8% and relative root mean square errors of approximately 27% and 20% for the global and diffuse PPFD, respectively.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


2004 ◽  
Vol 21 (2) ◽  
pp. 74-79 ◽  
Author(s):  
Chris Maundrell ◽  
Chris Hawkins

Abstract To enhance white spruce [Picea glauca (Moench) Voss] regeneration and growth, the potential for using an aspen (Populus tremuloides Michx.) overstory to suppress bluejoint grass [Calamagrostis canadensis (Michx.)] and fireweed (Epilobium angustifolium L) was investigated. Response to canopy opening was assessed on 10 treatments where the canopy had been incrementally opened. At the summer solstice, measurements of attenuated light were taken at 1.3 meters (breast height). Bluejoint grass and fireweed both responded with greater ground cover as the photosynthetic photon flux density increased (R2 = 0.84, P = 0.0002; R2 = 0.90, P = 0.0001; respectively). Where aspen has developed an overstory canopy, it may be possible to control competing vegetation to create favorable environmental conditions for spruce re-establishment, growth, and release while encouraging a sustainable mixedwood stand.


2019 ◽  
Vol 52 (5) ◽  
pp. 583-594
Author(s):  
T Han ◽  
T Astafurova ◽  
S Turanov ◽  
A Burenina ◽  
A Butenkova ◽  
...  

Definition of the growth and development characteristics of plants in varied light conditions is a key factor for the creation of highly efficient light facilities for plant cultivation. Experimental research was conducted using an LED irradiation facility with photosynthetic photon flux densities ranging from 0 to 261 μmol m−2 s−1 and a continuous spectrum with maxima at 445 and 600 nm. Under the maximum photosynthetic photon flux density (261 μmol m− 2 s−1) wheat germs demonstrated diminishing leaf surface with high values of specific leaf area, enhanced pubescence of ground tissues, increases in the number of stomata on the upper epidermis and palisade, and an increase in the thickness of the leaves as well as an increase in carotenoids but a decrease in the chlorophyll a+b/carotenoids relation. It was revealed that the optimum level of photosynthetic photon flux density for the referred spectrum was in the range from 82 to 100 µmol m−2 s−1, which may enable a reduction of irradiance under specific conditions during early development with no harm to the plants while minimizing energy consumption during cultivation.


Sign in / Sign up

Export Citation Format

Share Document