scholarly journals A Network Analysis for Environmental Assessment in Wine Supply Chain

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 211
Author(s):  
Giulia Maesano ◽  
Mirco Milani ◽  
Elisabetta Nicolosi ◽  
Mario D’Amico ◽  
Gaetano Chinnici

In the agri-food sector, the Life Cycle Assessment method (LCA) is used to evaluate the environmental impact of a product. Within agri-food products, wine is among the most analysed products, not only for its economic importance but also for the environmental impact of its activity. The paper aims to identify the main trends in the wine sector revolving around environmental evaluation using the LCA method in the academic literature. The aim is to investigate the literature on life cycle assessment analysis of grape and wine production through the systematic grouping of papers into clusters of research. So, the purpose is to discuss the gaps and insights identified by the study in order to aid in the development of a comprehensive state of the art on the topic. Scopus and Web of Science were used to search all articles following a clear and replicable protocol. The results (keywords) were subjected to co-occurrence analysis using VOSviewer, after which the articles were further analysed. Through a bibliographic coupling analysis, the research results were grouped through a network analysis that allowed identifying the research trends on the topic. Three clusters were identified containing the main lines of research on the subject. The results show that nowadays the literature is focusing on concerns related to climate change and consumer awareness on sustainability issues and certifications as well as environmental impacts generated mainly in the production phase in the vineyard. The research results are of interest for future research on LCA analysis in the wine sector in order to contribute to the discussion on the current model in the global wine sector.

2021 ◽  
Vol 13 (9) ◽  
pp. 4856
Author(s):  
Xuejie Deng ◽  
Yu Li ◽  
Hao Liu ◽  
Yile Zhao ◽  
Yinchao Yang ◽  
...  

Microbial induced carbonate precipitation (MICP) is a new geotechnical engineering technology used to strengthen soils and other materials. Although it is considered to be environmentally friendly, there is a lack of quantitative data and objective evaluation to support conclusions about its environmental impact. In this paper, the energy consumption and carbon emissions of MICP technology are quantitatively analyzed by using the life cycle assessment (LCA) method. The environmental effects of MICP technology are evaluated from the perspectives of resource consumption and environmental impact. The results show that for each tonne of calcium carbonate produced by MICP technology, 1.8 t standard coal is consumed and 3.4 t CO2 is produced, among which 80.4% of the carbon emissions and 96% of the energy consumption come from raw materials. Comparing using MICP with cement, lime, and sintered brick, the current MICP application process consumes less non-renewable resources but has a greater environmental impact. The major environmental impact that MICP has is the production of smoke and ash, with secondary impacts being global warming, photochemical ozone creation, acidification, and eutrophication. In five potential application scenarios of MICP, including concrete, sintered brick, lime mortar, mine cemented backfill, and foundation reinforcement, the carbon emissions of MICP are 3 to 7 times greater than the emissions of traditional technologies. The energy consumption is 15 to 23 times. Based on the energy consumption and carbon emissions characteristics of MICP technology at the current condition, suggestions are given for the future research of MICP.


2020 ◽  
Vol 12 (11) ◽  
pp. 4604
Author(s):  
Jan Matuštík ◽  
Vladimír Kočí

Electronic shopping is getting more and more popular, and it is not only clothes and electronics that people buy online, but groceries and household products too. Based on real-life data from a major cosmetics and household products retailer in the Czech Republic, this study set to assess the life cycle environmental impact of parcel delivery. Two archetype parcels containing common household and hygiene products were designed and packed in two distinct ways, and the environmental impact was quantified using the Life Cycle Assessment method. It showed that it is environmentally beneficial to use plastic cushions to insulate the goods instead of paper. However, the most important process contributing to the environmental burden was found to be electricity consumption in the logistics center. Hence, the importance of energy efficiency and efficient space utilization was demonstrated on alternative scenarios. Since the cardboard box the goods are packed in turned out to be another important contributor, an alternative scenario was designed where a reusable plastic crate was used instead. Even though the scenario was based on several simplistic assumptions, it showed a clear potential to be environmentally beneficial. In the study, contribution of other processes was scrutinized, as well as sensitivity to variation of parameters, e.g. transportation distances. The main scientific contribution of this work is to show the importance of logistics and distribution of products to end customers in the rapidly developing field of electronic retail of household products.


2021 ◽  
Author(s):  
Kristína Kováčiková ◽  
◽  
Antonín Kazda

The paper is focused on the assessment of the environmental impacts of transport infrastructure and individual types of transport using the life cycle assessment method. The paper contains a description of the basic terminology of the problem related to transport, the environment and methods of environmental impact assessment. The paper contains analysis on monitoring carbon dioxide emissions from a global perspective as well as from a regional perspective focused on Slovakia. The aim of the paper is to create a proposal for the assessment of environmental impacts of transport infrastructure, in the form of specification of areas of assessment for selected types of transport with a focus on carbon dioxide emissions. Using the knowledge and principles of the life cycle method, a proposal for relevant indicators and a proposal for a comprehensive assessment of the impacts of selected types of transport, focused on carbon dioxide emissions, is created in the paper


2016 ◽  
pp. 15-26 ◽  
Author(s):  
Rutjaya P. Na Talang ◽  
Sanya Sirivithayapakorn

In many Asian countries, fired bricksare producedby burning raw bricks in a rudimen-tary clamp kiln without pollution control mechanisms, a practice which contributes to several kinds of environmental impact. This research investigated the inputs and outputs associated with production of fired bricks using the rice husk-fuelled clamp kiln. Data collected includedraw material use, energy, products, emissions and kiln temperatures. To quantify environmental impacts, the consequential-focused life cycle assessment (LCA) approach was adopted. The impactswere assessed in terms of fuel substitution as the acquisition of another fuelwas re-quired to substitute for electricity. The findings indicated that the clamp kiln technology pro-duced lowCO2emissions per unit of production and per unit of energy input, despite poor specific energy consumption. The LCA analysis indicated that the use of rice husk was the major contributor to environmental impact, and that abiotic depletion of fossil fuels repre-sented the environmental hotspot. To improve combustion efficiency, the clamp kilns should beeither insulated or replaced with more efficient kiln technology, in conjunction with the use ofrice husk.


2017 ◽  
Vol 8 (1) ◽  
pp. 57-66
Author(s):  
Tomasz Nitkiewicz ◽  
Agnieszka Ociepa-Kubicka

Abstract The article presents the activities of selected company - biomass manufacturer and user - with regard to environmental impact of biomass supply chain solutions. The biomass production facility of Biomass User Company is one of the most modern plant in Central Europe. It uses wooden and agricultural biomass to produce heat in biomass-fired steam boiler. The objective of the paper is to investigate the environmental impact with the use of life cycle assessment method. In our study, we define different scenarios for biomass transportation, concerning its supply as well as distribution. Life cycle assessment method is used to estimate environmental impact and to perform sensitivity analysis on transport modes, fuel mix structure and destination of self-cropped biomass. LCA ReCiPe endpoint indicator is used to measure environmental performance. As the results show, transport efforts are not significant factor while environmental impacts are concerned but are rather impact intensive type of activity and should be addressed with company environmental policies.


2011 ◽  
Vol 383-390 ◽  
pp. 3387-3394 ◽  
Author(s):  
C.Y. Ng ◽  
K.B. Chuah

This paper discusses the significant percentage increase of environmental impact generated in the manufacturing phase as a result of changes in the key material selection during the product design process. The findings in this paper are important for product designers. They need to pay extra attention when choosing plastics or metals when assessing design alternatives that can reduce the environmental impact. Four products were analysed in this case study namely water pump, hot pot, plastic kettle and stainless steel kettle. The environmental impacts of these four products are assessed by Life Cycle Assessment (LCA) and the CML approach from Institute of Environmental Sciences is adopted as the Life Cycle Impact Assessment method.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 69 ◽  
Author(s):  
Olimpia Martucci ◽  
Gabriella Arcese ◽  
Chiara Montauti ◽  
Alessia Acampora

When examining the triple bottom line approach (TBL) in regard to sustainability, social aspects are the less explored in the context of wine production. This paper analyzes the social sustainability assessment tools available for companies who need to consider their social impacts. For this purpose, we started from the analysis conducted in the work, which was the integration between the territory indicator of VIVA project “Sustainable Wine”, which is the sustainable wine project and social life cycle assessment analysis for the wine sector. In this study, the social life cycle assessment (S-LCA) methodology was compared with the VIVA certification requirements for Italian wine production. The main research objective was to analyze differences and similarities between the two indicator sets for the evaluation of the social aspects related to this sector. Starting from a general introduction to the agri-food and wine sector, we provide an overview of the VIVA project and of the S-LCA for the assessment methodology. Subsequently, we focus on the wine sector and the main players involved, as well as the primary production phases. Finally, we compare the two tools—the S-LCA and the VIVA project—and discuss the main differences between the two instruments and the possibilities for future works to develop the integration of these indicators sets to broader the analyses of the socioeconomic impacts of the wine sector.


Sign in / Sign up

Export Citation Format

Share Document