Calculating the Environmental Impact of Energy Consumption in the Oil Depot Using Life Cycle Assessment Method (Case Study: Oil Depot at Tasikmalaya)

Author(s):  
Iswan Prahastono ◽  
Rina Aimisa ◽  
Gde KM Atmajaya ◽  
Ngapuli I. Sinisuka ◽  
Indra Surya Dinata ◽  
...  
2011 ◽  
Vol 383-390 ◽  
pp. 3387-3394 ◽  
Author(s):  
C.Y. Ng ◽  
K.B. Chuah

This paper discusses the significant percentage increase of environmental impact generated in the manufacturing phase as a result of changes in the key material selection during the product design process. The findings in this paper are important for product designers. They need to pay extra attention when choosing plastics or metals when assessing design alternatives that can reduce the environmental impact. Four products were analysed in this case study namely water pump, hot pot, plastic kettle and stainless steel kettle. The environmental impacts of these four products are assessed by Life Cycle Assessment (LCA) and the CML approach from Institute of Environmental Sciences is adopted as the Life Cycle Impact Assessment method.


2021 ◽  
Vol 13 (9) ◽  
pp. 4856
Author(s):  
Xuejie Deng ◽  
Yu Li ◽  
Hao Liu ◽  
Yile Zhao ◽  
Yinchao Yang ◽  
...  

Microbial induced carbonate precipitation (MICP) is a new geotechnical engineering technology used to strengthen soils and other materials. Although it is considered to be environmentally friendly, there is a lack of quantitative data and objective evaluation to support conclusions about its environmental impact. In this paper, the energy consumption and carbon emissions of MICP technology are quantitatively analyzed by using the life cycle assessment (LCA) method. The environmental effects of MICP technology are evaluated from the perspectives of resource consumption and environmental impact. The results show that for each tonne of calcium carbonate produced by MICP technology, 1.8 t standard coal is consumed and 3.4 t CO2 is produced, among which 80.4% of the carbon emissions and 96% of the energy consumption come from raw materials. Comparing using MICP with cement, lime, and sintered brick, the current MICP application process consumes less non-renewable resources but has a greater environmental impact. The major environmental impact that MICP has is the production of smoke and ash, with secondary impacts being global warming, photochemical ozone creation, acidification, and eutrophication. In five potential application scenarios of MICP, including concrete, sintered brick, lime mortar, mine cemented backfill, and foundation reinforcement, the carbon emissions of MICP are 3 to 7 times greater than the emissions of traditional technologies. The energy consumption is 15 to 23 times. Based on the energy consumption and carbon emissions characteristics of MICP technology at the current condition, suggestions are given for the future research of MICP.


2021 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Ada Malagnino ◽  
Maddalena Rostagno ◽  
Giuseppe Gaspare Amaro ◽  
Anestis Vlysidis ◽  
Anastasia Gkika ◽  
...  

In this study, life cycle assessment and life cycle costing results about piezoelectric and thermoelectric materials for energy harvesters (EHs) are extracted from the literature and evaluated. This study serves as a basis for comparing current EHs with innovative EHs that will be developed within the Horizon 2020 FAST SMART project. FAST—SMART aims at increasing the performance of current EHs while reducing at the same time: The use of rare elements and toxic substances; resources and energy consumption; environmental impact and costs; paving the way for the adoption of new and more environmental-friendly systems for energy harvesting.


2019 ◽  
Vol 7 (10) ◽  
pp. 359 ◽  
Author(s):  
Hwang ◽  
Jeong ◽  
Jung ◽  
Kim ◽  
Zhou

This research was focused on a comparative analysis of using LNG as a marine fuel with a conventional marine gas oil (MGO) from an environmental point of view. A case study was performed using a 50K bulk carrier engaged in domestic services in South Korea. Considering the energy exporting market for South Korea, the fuel supply chain was designed with the two largest suppliers: Middle East (LNG-Qatar/MGO-Saudi Arabia) and U.S. The life cycle of each fuel type was categorized into three stages: Well-to-Tank (WtT), Tank-to-Wake (TtW), and Well-to-Wake (WtW). With the process modelling, the environmental impact of each stage was analyzed based on the five environmental impact categorizes: Global Warming Potential (GWP), Acidification Potential (AP), Photochemical Potential (POCP), Eutrophication Potential (EP) and Particulate Matter (PM). Analysis results reveal that emission levels for the LNG cases are significantly lower than the MGO cases in all potential impact categories. Particularly, Case 1 (LNG import to Korea from Qatar) is identified as the best option as producing the lowest emission levels per 1.0 × 107 MJ of fuel consumption: 977 tonnages of CO2 equivalent (for GWP), 1.76 tonnages of SO2 equivalent (for AP), 1.18 tonnages of N equivalent (for EP), 4.28 tonnages of NMVOC equivalent (for POCP) and 26 kg of PM 2.5 equivalent (for PM). On the other hand, the results also point out that the selection of the fuel supply routes could be an important factor contributing to emission levels since longer distances for freight transportation result in more emissions. It is worth noting that the life cycle assessment can offer us better understanding of holistic emission levels contributed by marine fuels from the cradle to the grave, which are highly believed to remedy the shortcomings of current marine emission indicators.


2020 ◽  
Vol 12 (11) ◽  
pp. 4604
Author(s):  
Jan Matuštík ◽  
Vladimír Kočí

Electronic shopping is getting more and more popular, and it is not only clothes and electronics that people buy online, but groceries and household products too. Based on real-life data from a major cosmetics and household products retailer in the Czech Republic, this study set to assess the life cycle environmental impact of parcel delivery. Two archetype parcels containing common household and hygiene products were designed and packed in two distinct ways, and the environmental impact was quantified using the Life Cycle Assessment method. It showed that it is environmentally beneficial to use plastic cushions to insulate the goods instead of paper. However, the most important process contributing to the environmental burden was found to be electricity consumption in the logistics center. Hence, the importance of energy efficiency and efficient space utilization was demonstrated on alternative scenarios. Since the cardboard box the goods are packed in turned out to be another important contributor, an alternative scenario was designed where a reusable plastic crate was used instead. Even though the scenario was based on several simplistic assumptions, it showed a clear potential to be environmentally beneficial. In the study, contribution of other processes was scrutinized, as well as sensitivity to variation of parameters, e.g. transportation distances. The main scientific contribution of this work is to show the importance of logistics and distribution of products to end customers in the rapidly developing field of electronic retail of household products.


2021 ◽  
Author(s):  
Kristína Kováčiková ◽  
◽  
Antonín Kazda

The paper is focused on the assessment of the environmental impacts of transport infrastructure and individual types of transport using the life cycle assessment method. The paper contains a description of the basic terminology of the problem related to transport, the environment and methods of environmental impact assessment. The paper contains analysis on monitoring carbon dioxide emissions from a global perspective as well as from a regional perspective focused on Slovakia. The aim of the paper is to create a proposal for the assessment of environmental impacts of transport infrastructure, in the form of specification of areas of assessment for selected types of transport with a focus on carbon dioxide emissions. Using the knowledge and principles of the life cycle method, a proposal for relevant indicators and a proposal for a comprehensive assessment of the impacts of selected types of transport, focused on carbon dioxide emissions, is created in the paper


Sign in / Sign up

Export Citation Format

Share Document