scholarly journals Artificial Intelligence in Smart Farms: Plant Phenotyping for Species Recognition and Health Condition Identification Using Deep Learning

AI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 274-289
Author(s):  
Anirban Jyoti Hati ◽  
Rajiv Ranjan Singh

This paper analyses the contribution of residual network (ResNet) based convolutional neural network (CNN) architecture employed in two tasks related to plant phenotyping. Among the contemporary works for species recognition (SR) and infection detection of plants, the majority of them have performed experiments on balanced datasets and used accuracy as the evaluation parameter. However, this work used an imbalanced dataset having an unequal number of images, applied data augmentation to increase accuracy, organised data as multiple test cases and classes, and, most importantly, employed multiclass classifier evaluation parameters useful for asymmetric class distribution. Additionally, the work addresses typical issues faced such as selecting the size of the dataset, depth of classifiers, training time needed, and analysing the classifier’s performance if various test cases are deployed. In this work, ResNet 20 (V2) architecture has performed significantly well in the tasks of Species Recognition (SR) and Identification of Healthy and Infected Leaves (IHIL) with a Precision of 91.84% and 84.00%, Recall of 91.67% and 83.14% and F1 Score of 91.49% and 83.19%, respectively.

2020 ◽  
Author(s):  
Tuan Pham

Chest X-rays have been found to be very promising for assessing COVID-19 patients, especially for resolving emergency-department and urgent-care-center overcapacity. Deep-learning (DL) methods in artificial intelligence (AI) play a dominant role as high-performance classifiers in the detection of the disease using chest X-rays. While many new DL models have been being developed for this purpose, this study aimed to investigate the fine tuning of pretrained convolutional neural networks (CNNs) for the classification of COVID-19 using chest X-rays. Three pretrained CNNs, which are AlexNet, GoogleNet, and SqueezeNet, were selected and fine-tuned without data augmentation to carry out 2-class and 3-class classification tasks using 3 public chest X-ray databases. In comparison with other recently developed DL models, the 3 pretrained CNNs achieved very high classification results in terms of accuracy, sensitivity, specificity, precision, F1 score, and area under the receiver-operating-characteristic curve. AlexNet, GoogleNet, and SqueezeNet require the least training time among pretrained DL models, but with suitable selection of training parameters, excellent classification results can be achieved without data augmentation by these networks. The findings contribute to the urgent need for harnessing the pandemic by facilitating the deployment of AI tools that are fully automated and readily available in the public domain for rapid implementation.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2399 ◽  
Author(s):  
Cunwei Sun ◽  
Yuxin Yang ◽  
Chang Wen ◽  
Kai Xie ◽  
Fangqing Wen

The convolutional neural network (CNN) has made great strides in the area of voiceprint recognition; but it needs a huge number of data samples to train a deep neural network. In practice, it is too difficult to get a large number of training samples, and it cannot achieve a better convergence state due to the limited dataset. In order to solve this question, a new method using a deep migration hybrid model is put forward, which makes it easier to realize voiceprint recognition for small samples. Firstly, it uses Transfer Learning to transfer the trained network from the big sample voiceprint dataset to our limited voiceprint dataset for the further training. Fully-connected layers of a pre-training model are replaced by restricted Boltzmann machine layers. Secondly, the approach of Data Augmentation is adopted to increase the number of voiceprint datasets. Finally, we introduce fast batch normalization algorithms to improve the speed of the network convergence and shorten the training time. Our new voiceprint recognition approach uses the TLCNN-RBM (convolutional neural network mixed restricted Boltzmann machine based on transfer learning) model, which is the deep migration hybrid model that is used to achieve an average accuracy of over 97%, which is higher than that when using either CNN or the TL-CNN network (convolutional neural network based on transfer learning). Thus, an effective method for a small sample of voiceprint recognition has been provided.


2020 ◽  
Vol 10 (20) ◽  
pp. 7301
Author(s):  
Daniel Octavian Melinte ◽  
Ana-Maria Travediu ◽  
Dan N. Dumitriu

This paper presents an extensive research carried out for enhancing the performances of convolutional neural network (CNN) object detectors applied to municipal waste identification. In order to obtain an accurate and fast CNN architecture, several types of Single Shot Detectors (SSD) and Regional Proposal Networks (RPN) have been fine-tuned on the TrashNet database. The network with the best performances is executed on one autonomous robot system, which is able to collect detected waste from the ground based on the CNN feedback. For this type of application, a precise identification of municipal waste objects is very important. In order to develop a straightforward pipeline for waste detection, the paper focuses on boosting the performance of pre-trained CNN Object Detectors, in terms of precision, generalization, and detection speed, using different loss optimization methods, database augmentation, and asynchronous threading at inference time. The pipeline consists of data augmentation at the training time followed by CNN feature extraction and box predictor modules for localization and classification at different feature map sizes. The trained model is generated for inference afterwards. The experiments revealed better performances than all other Object Detectors trained on TrashNet or other garbage datasets with a precision of 97.63% accuracy for SSD and 95.76% accuracy for Faster R-CNN, respectively. In order to find the optimal higher and lower bounds of our learning rate where the network is actually learning, we trained our model for several epochs, updating the learning rate after each epoch, starting from 1 × 10−10 and decreasing it until reaching 1 × 10−1.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Yang ◽  
Yan Zhang ◽  
Pinggui Lei ◽  
Lihui Wang ◽  
Yuehong Miao ◽  
...  

Objectives. The purpose of this study was to segment the left ventricle (LV) blood pool, LV myocardium, and right ventricle (RV) blood pool of end-diastole and end-systole frames in free-breathing cardiac magnetic resonance (CMR) imaging. Automatic and accurate segmentation of cardiac structures could reduce the postprocessing time of cardiac function analysis. Method. We proposed a novel deep learning network using a residual block for the segmentation of the heart and a random data augmentation strategy to reduce the training time and the problem of overfitting. Automated cardiac diagnosis challenge (ACDC) data were used for training, and the free-breathing CMR data were used for validation and testing. Results. The average Dice was 0.919 (LV), 0.806 (myocardium), and 0.818 (RV). The average IoU was 0.860 (LV), 0.699 (myocardium), and 0.761 (RV). Conclusions. The proposed method may aid in the segmentation of cardiac images and improves the postprocessing efficiency of cardiac function analysis.


Author(s):  
Yayue Pan ◽  
Chi Zhou ◽  
Yong Chen ◽  
Jouni Partanen

In engineering systems, features such as textures or patterns on curved surfaces are common. In addition, such features, in many cases, are required to have shapes that are conformal to the underlying surfaces. To address the fabrication challenge in building such conformal features on curved surfaces, a newly developed additive manufacturing (AM) process named computer numerically controlled (CNC) accumulation is investigated by integrating multiple tools and multiple axis motions. Based on a fiber optical cable and a light source, a CNC accumulation tool can have multi-axis motion, which is beneficial in building conformal features on curved surfaces. To address high resolution requirement, the use of multiple accumulation tools with different curing sizes, powers, and shapes is explored. The tool path planning methods for given cylindrical and spherical surfaces are discussed. Multiple test cases have been performed based on a developed prototype system. The experimental results illustrate the capability of the newly developed AM process and its potential use in fabricating conformal features on given curved surfaces.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chanattra Ammatmanee ◽  
Lu Gan

PurposeBecause of the fast-growing digital image collections on online platforms and the transfer learning ability of deep learning technology, image classification could be improved and implemented for the hostel domain, which has complex clusters of image contents. This paper aims to test the potential of 11 pretrained convolutional neural network (CNN) with transfer learning for hostel image classification on the first hostel image database to advance the knowledge and fill the gap academically, as well as to suggest an alternative solution in optimal image classification with less labour cost and human errors to those who manage hostel image collections.Design/methodology/approachThe hostel image database is first created with data pre-processing steps, data selection and data augmentation. Then, the systematic and comprehensive investigation is divided into seven experiments to test 11 pretrained CNNs which transfer learning was applied and parameters were fine-tuned to match this newly created hostel image dataset. All experiments were conducted in Google Colaboratory environment using PyTorch.FindingsThe 7,350 hostel image database is created and labelled into seven classes. Furthermore, its experiment results highlight that DenseNet 121 and DenseNet 201 have the greatest potential for hostel image classification as they outperform other CNNs in terms of accuracy and training time.Originality/valueThe fact that there is no existing academic work dedicating to test pretrained CNNs with transfer learning for hostel image classification and no existing hostel image-only database have made this paper a novel contribution.


2020 ◽  
Vol 35 (24) ◽  
pp. 1950142
Author(s):  
Allen Caldwell ◽  
Philipp Eller ◽  
Vasyl Hafych ◽  
Rafael Schick ◽  
Oliver Schulz ◽  
...  

Numerically estimating the integral of functions in high dimensional spaces is a nontrivial task. A oft-encountered example is the calculation of the marginal likelihood in Bayesian inference, in a context where a sampling algorithm such as a Markov Chain Monte Carlo provides samples of the function. We present an Adaptive Harmonic Mean Integration (AHMI) algorithm. Given samples drawn according to a probability distribution proportional to the function, the algorithm will estimate the integral of the function and the uncertainty of the estimate by applying a harmonic mean estimator to adaptively chosen regions of the parameter space. We describe the algorithm and its mathematical properties, and report the results using it on multiple test cases.


2020 ◽  
Vol 10 (22) ◽  
pp. 8257
Author(s):  
Adam Gauci ◽  
Alan Deidun ◽  
John Abela

In recent years, citizen science campaigns have provided a very good platform for widespread data collection. Within the marine domain, jellyfish are among the most commonly deployed species for citizen reporting purposes. The timely validation of submitted jellyfish reports remains challenging, given the sheer volume of reports being submitted and the relative paucity of trained staff familiar with the taxonomic identification of jellyfish. In this work, hundreds of photos that were submitted to the “Spot the Jellyfish” initiative are used to train a group of region-based, convolution neural networks. The main aim is to develop models that can classify, and distinguish between, the five most commonly recorded species of jellyfish within Maltese waters. In particular, images of the Pelagia noctiluca, Cotylorhiza tuberculata, Carybdea marsupialis, Velella velella and salps were considered. The reliability of the digital architecture is quantified through the precision, recall, f1 score, and κ score metrics. Improvements gained through the applicability of data augmentation and transfer learning techniques, are also discussed. Very promising results, that support upcoming aspirations to embed automated classification methods within online services, including smart phone apps, were obtained. These can reduce, and potentially eliminate, the need for human expert intervention in validating citizen science reports for the five jellyfish species in question, thus providing prompt feedback to the citizen scientist submitting the report.


2021 ◽  
Author(s):  
Anirvin Sharma ◽  
Abhinav Singh ◽  
Tanupriya Choudhury ◽  
Tanmay Sarkar

Abstract In this research, we compare and contrast various image classification algorithms and how effective they are in specific problem sets where data might be scarce such as prediction of rare phenomena (for example, natural calamities), enterprise solutions etc. We have employed various state-of-the-art algorithms in this study credited to have been some of the best classifiers at the time of their inception. These classifiers have also been suspected to fall prey to overfitting on the datasets they were initially tested on viz. ImageNet and Common Objects in Context (COCO); we test to what extent these classifiers tend to generalize to the new data provided by us in a transfer learning framework. We utilize transfer learning on the ImageNet classifiers to adapt to our smaller dataset and examine various techniques such as data augmentation, batch normalization, dropout etc. to mitigate overfitting. All the classifiers follow a standard fully connected architecture. The end result should provide the reader with an overall analysis of which algorithm or approach to use in conditions where data might be limited while also giving a brief overview of the progress of image classification algorithms since their advent. We also provide an analysis on the effectiveness of data augmentation in limited datasets by providing results achieved with and without utilizing data augmentation. In our case, we found the MobileNet (with its lightweight nature contributing to low computational costs) and InceptionV3 (owing to its lower training time) to be the best performing classifiers for applying transfer learning to limited datasets out of the classifiers we have used for our study. This paper aims to establish preemptive standards that can be used to evaluate the models which can be used in object recognition, and image classification for problems containing limited amounts of data.


Sign in / Sign up

Export Citation Format

Share Document