scholarly journals Proteomic Analysis of Beef Tenderloin and Flank Assessed Using an Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)

Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Zhaomin Lei ◽  
Jianping Wu ◽  
Deyin Zhang ◽  
Ting Liu ◽  
Shengguo Zhao ◽  
...  

Herein, we performed a proteomic analysis of tenderloin and flank steaks from Simmental cattle using the isobaric tags for a relative and absolute quantification (iTRAQ) approach. We identified 17 amino acids in both steaks, and Gly, Cys, Ile, Lys, and Pro differed most in abundance between the steak types (p < 0.05). A comparison of the expression patterns in steaks revealed 128 differentially expressed proteins (DEPs), of which 44 were up-regulated and 84 were down-regulated. Furthermore, 27 DEPs (p < 0.05) were subjected to gene ontology (GO) analysis, and many were found to be related to oxidation-reduction, metabolism, hydrogen ion transmembrane transport, transport, the tricarboxylic acid (TCA) cycle, mitochondrial electron transport, and the conversion of nicotinamide adenine dinucleotide (NADH) to ubiquinone. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also implicated these DEPs in various signalling pathways, including oxidative phosphorylation, cardiac muscle contraction, the TCA cycle, biosynthesis, and the metabolism. These findings provide a new insight into key proteins involved in the determination of amino acid composition in beef.

Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 71 ◽  
Author(s):  
Jinsong Xu ◽  
Xing Qiao ◽  
Zhitao Tian ◽  
Xuekun Zhang ◽  
Xiling Zou ◽  
...  

The overall health of a plant is constantly affected by the changing and hostile environment. Due to climate change and the farming pattern of rice (Oryza sativa) and rapeseed (Brassica napus L.), stress from waterlogging poses a serious threat to productivity assurance and the yield of rapeseed in China’s Yangtze River basin. In order to improve our understanding of the complex mechanisms behind waterlogging stress and identify waterlogging-responsive proteins, we firstly conducted iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic analysis of rapeseed roots under waterlogging treatments, for both a tolerant cultivar ZS9 and sensitive cultivar GH01. A total of 7736 proteins were identified by iTRAQ, of which several hundred showed different expression levels, including 233, 365, and 326 after waterlogging stress for 4H, 8H, and 12H in ZS9, respectively, and 143, 175, and 374 after waterlogging stress for 4H, 8H, and 12H in GH01, respectively. For proteins repeatedly identified at different time points, gene ontology (GO) cluster analysis suggested that the responsive proteins of the two cultivars were both enriched in the biological process of DNA-dependent transcription and the oxidation–reduction process, and response to various stress and hormone stimulus, while different distribution frequencies in the two cultivars was investigated. Moreover, overlap proteins with similar or opposite tendencies of fold change between ZS9 and GH01 were observed and clustered based on the different expression ratios, suggesting the two genotype cultivars exhibited diversiform molecular mechanisms or regulation pathways in their waterlogging stress response. The following qRT-PCR (quantitative real-time polymerase chain reaction) results verified the candidate proteins at transcription levels, which were prepared for further research. In conclusion, proteins detected in this study might perform different functions in waterlogging responses and would provide information conducive to better understanding adaptive mechanisms under environmental stresses.


2018 ◽  
Vol 11 (1) ◽  
pp. 1-11
Author(s):  
Hossein Mahboudi ◽  
Negin Mohammadizadeh Heidari ◽  
Zahra Irani Rashidabadi ◽  
Ali Houshmand Anbarestani ◽  
Soroush Karimi ◽  
...  

Background: There are numerous approaches dealing with relative and absolute quantitation. The methods differ in their efficiency assumption and applicability. Objective: Current methodologies and rations used in qPCR quantification were compared in an experimental study of transgenic copy number determination of a monoclonal antibody Daclizumab. Methods: With an inter and intra-methodical view, variations in relative and absolute quantification strategies were discretely extracted and compared to one another. Results: In relative quantification, six methods were studied and the ratios were computed relative to Glucagon as internal control. For Absolute quantification, the calculations were based on standard curve. Relative quantification considers the relative changes in expression levels while Absolute quantification relates the PCR signal to input copy number with a calibration curve. Conclusion: The observed unevenness of the ratios in Relative approach pointed mainly to the efficiency changes and its calculation formula. Whereas results in Absolute approach strategies showed homogeneity which indicates the consistency of the calculation method.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3605
Author(s):  
Haijun Jin ◽  
Hua Yu ◽  
Haixia Wang ◽  
Jia Zhang

Dipsacus asperoides is a kind of Chinese herbal medicine with beneficial health properties. To date, the quality of D. asperoides from different habitats has shown significant differences. However, the molecular differences in D. asperoides from different habitats are still unknown. The aim of this study was to investigate the differences in protein levels of D. asperoides from different habitats. Isobaric tags for relative and absolute quantification (iTRAQ) and 2DLC/MS/MS were used to detect statistically significant changes in D. asperoides from different habitats. Through proteomic analysis, a total of 2149 proteins were identified, of which 42 important differentially expressed proteins were screened. Through in-depth analysis of differential proteins, the protein metabolism energy and carbohydrate metabolism of D. asperoides from Hubei Province were strong, but their antioxidant capacity was weak. We found that three proteins, UTP-glucose-1-phosphate uridylyltransferase, allene oxide cyclase, and isopentyl diphosphate isomerase 2, may be the key proteins involved in dipsacus saponin VI synthesis. Eight proteins were found in D. asperoides in response to environmental stress from different habitats. Quantitative real-time PCR analysis confirmed the accuracy and authenticity of the proteomic analysis. The results of this study may provide the basic information for exploring the cause of differences in secondary metabolites in different habitats of D. asperoides and the protein mechanism governing differences in quality.


PROTEOMICS ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Tammy Casey ◽  
Peter S. Solomon ◽  
Scott Bringans ◽  
Kar-Chun Tan ◽  
Richard P. Oliver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document