scholarly journals Comparison of the Vertical Force Distribution in the Paws of Dogs with Coxarthrosis and Sound Dogs Walking over a Pressure Plate

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 986 ◽  
Author(s):  
Jane P. L. Moreira ◽  
Alexander Tichy ◽  
Barbara Bockstahler

In the present study, we used a pressure plate to investigate the ground reaction forces of limbs and the vertical force distribution (VFD) within the paws of dogs with coxarthrosis. We included 23 sound dogs (GSou) and 23 dogs with hip osteoarthrosis (GCox). The dogs walked over a pressure plate and the peak vertical force (PFz), vertical impulse (IFz) as the percentage of the total force, and time of occurrence of PFz as a percent of the stance phase duration (TPFz%) were evaluated, as well for the entire limb as in the paws (where the paws were divided into four quadrants). The GCox presented a lower PFz% in the lame hind limb than in others and transferred the weight to the caudal quadrants of the front limbs. IFz% was lower in the lame limb and was counterbalanced through higher loading of the caudal quadrants in all unaffected limbs. TPFz% was reached later in the lame limb than in the contralateral limb and the GSou, specifically in the caudomedial quadrant. In conclusion, we found complex compensatory effects of lameness in the hind limb, and this methodology was useful to define the VFD within the paws of dogs.

2020 ◽  
pp. 1098612X2094814
Author(s):  
Eva Schnabl-Feichter ◽  
Sophia Schnabl ◽  
Alexander Tichy ◽  
Michaela Gumpenberger ◽  
Barbara Bockstahler

Objectives The objective of this study was to compare ground reaction forces (GRFs) of a group of cats after femoral head and neck ostectomy (FHO) with those of a historical control group. Methods We searched the database of the Small Animal Clinic of the Veterinary University in Vienna for cats that had undergone unilateral FHO at least 1 year previously. Owners were telephoned and invited to the clinic with their cats for a re-examination. An in-house owner questionnaire-based evaluation, complete orthopaedic examination, hip radiography and gait analysis with a pressure-sensitive plate were performed, and results were compared within and between groups (FHO group and control group [CG]). Results Seventeen cats that had undergone FHO (FHO group) at least 1 year previously and 15 healthy cats (CG) from a previous study were included. Measured GRFs (peak vertical force and vertical impulse [IFz] normalised to total force [%TF]) of the FHO legs were lower than those of the other legs of the FHO group and the legs of the CG. Results of the owner questionnaire were generally good and did not match the results of the GRF comparison. Furthermore, the gaits evaluated during the orthopaedic examination did not correlate with the measured GRFs where we identified a certain degree of lameness (reduced IFz, %TF) in all cats. Cats with limb shortening (dorsally displaced major trochanter major) were not revealed to have different GRF measurements. Conclusions and relevance This is the first study to assess GRFs in a large group of cats that had undergone FHO, comparing findings with those in healthy cats. Even if the differences are statistically significant, but rather small, our findings point to a long-term residual gait abnormality that could be detected using a pressure-sensitive plate but not always with an orthopaedic examination, in cats 1 year after FHO.


2019 ◽  
Vol 32 (02) ◽  
pp. 097-103 ◽  
Author(s):  
Mark Glyde ◽  
Giselle Hosgood ◽  
Alasdair Dempsey ◽  
Sarah Wickham ◽  
Carla Appelgrein

Objective The main purpose of this study was to investigate the effect of a decrease in the A-frame angle of incline on the vertical and cranio-caudal ground reaction forces observed in a homogeneous cohort of agility dogs during entrance and contact with the A-frame. Materials and Methods A crossover study design was applied to eight large breed dogs to compare the vertical and cranio-caudal ground reaction forces entering the A-frame at three angles of incline: 40° (standard), 35° and 30°. The peak vertical force, passive impact peak, peak propulsive force, peak braking force, the time point (percentile) in the stance phase at which these events occurred and the proportion of time for limb contact spent in braking (% braking) and propulsion (% propulsion) were examined.The variables measured from three trials at each incline were evaluated for a significant effect of A-frame angle with height and velocity included as covariates. Results The peak propulsive force and the % propulsion were significantly higher at the 40° angle of incline compared with 30° (p = 0.013, p = 0.0165 respectively) and the % braking was significantly lower at the 40° angle of incline compared with 30° (p = 0.0165). There was no significant effect of A-frame angle on the vertical ground reaction forces measured. Clinical Significance Compared with 30° incline, ascent up the A-frame at a 40° incline requires a higher propulsive force and extended time in propulsion to maintain forward movement and convert potential energy into forward kinetic energy.


2005 ◽  
Vol 18 (03) ◽  
pp. 183-185 ◽  
Author(s):  
D. DuLaney ◽  
T. Purinton ◽  
H. Dookwah ◽  
S. Budsberg

SummaryThe purpose of this study was to evaluate the effect of starting distance on the peak vertical force (PVF) and associated vertical impulses (VI) of normal dogs. Five dogs of similar weight and body type were trotted at a velocity of 1.6–2.2 m/s from each of three starting distances; 2, 4, and 6 m, from the first plate in a two plate test field. A total of ten trials were recorded from each starting distance, five left first contacts and five right first contacts. Each ground reaction force (GRF) of interest was evaluated both within and between the three starting distances using a complete block ANOVA. There was not any significant effect of distance found on peak vertical forces in our study. However, distance did affect VI. Forelimb VI generated at a 2 m trot was significantly less than VI generated at a 6 m trot. Neither extreme distance was found to be significantly different than the 4 m VI. The VI of the hind limb was not significantly affected.


1994 ◽  
Vol 07 (04) ◽  
pp. 154-157 ◽  
Author(s):  
R. M. McLaughlin ◽  
J. K. Roush ◽  
Dominique Griffon

SummaryThe redistribution of vertical ground reaction forces after surgically induced forelimb lameness was evaluated in five Greyhounds at the walk. Vertical ground reaction forces were measured by force plate analysis before, three days, and seven days after a craniolateral approach to the shoulder was performed unilaterally in each dog.At day # 3, peak vertical force was significantly decreased in the operated forelimbs and in the ipsilateral hindlimbs. Peak vertical force was significantly increased in the contralateral fore- and hindlimbs. The total peak vertical force applied to both forelimbs did not change, nor did the total force applied to both hindlimbs. At day # 7, peak vertical force in each of the four limbs had returned to preoperative levels. Results of this study document the redistribution of ground reaction forces (at the walk) between the four limbs in the dog after an acute, surgically induced forelimb lameness.The redistribution of ground reaction force was evaluated in five Greyhounds before and during forelimb lameness. Lameness was induced by a craniolateral approach to one shoulder in each dog. At day # 3 after surgery, peak vertical force was decreased in the operated forelimbs and ipsilateral hindlimbs. Peak vertical force was increased in the contralateral fore- and hindlimbs. The distribution of ground reaction force in the four limbs returned to preoperative values seven days after surgery.


2009 ◽  
Vol 8 (1) ◽  
pp. 36 ◽  
Author(s):  
Gabriele Helms ◽  
Bernd-Arno Behrens ◽  
Martin Stolorz ◽  
Patrick Wefstaedt ◽  
Ingo Nolte

1999 ◽  
Vol 86 (5) ◽  
pp. 1657-1662 ◽  
Author(s):  
Young-Hui Chang ◽  
Rodger Kram

Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to −6, −3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (V˙o 2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of −6% BWt,V˙o 2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted ∼70% less propulsive impulse and exhibited a 33% reduction inV˙o 2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Lyle T. Jackson ◽  
Patrick M. Aubin ◽  
Matthew S. Cowley ◽  
Bruce J. Sangeorzan ◽  
William R. Ledoux

The symptomatic flatfoot deformity (pes planus with peri-talar subluxation) can be a debilitating condition. Cadaveric flatfoot models have been employed to study the etiology of the deformity, as well as invasive and noninvasive surgical treatment strategies, by evaluating bone positions. Prior cadaveric flatfoot simulators, however, have not leveraged industrial robotic technologies, which provide several advantages as compared with the previously developed custom fabricated devices. Utilizing a robotic device allows the researcher to experimentally evaluate the flatfoot model at many static instants in the gait cycle, compared with most studies, which model only one to a maximum of three instances. Furthermore, the cadaveric tibia can be statically positioned with more degrees of freedom and with a greater accuracy, and then a custom device typically allows. We created a six degree of freedom robotic cadaveric simulator and used it with a flatfoot model to quantify static bone positions at ten discrete instants over the stance phase of gait. In vivo tibial gait kinematics and ground reaction forces were averaged from ten flatfoot subjects. A fresh frozen cadaveric lower limb was dissected and mounted in the robotic gait simulator (RGS). Biomechanically realistic extrinsic tendon forces, tibial kinematics, and vertical ground reaction forces were applied to the limb. In vitro bone angular position of the tibia, calcaneus, talus, navicular, medial cuneiform, and first metatarsal were recorded between 0% and 90% of stance phase at discrete 10% increments using a retroreflective six-camera motion analysis system. The foot was conditioned flat through ligament attenuation and axial cyclic loading. Post-flat testing was repeated to study the pes planus deformity. Comparison was then made between the pre-flat and post-flat conditions. The RGS was able to recreate ten gait positions of the in vivo pes planus subjects in static increments. The in vitro vertical ground reaction force was within ±1 standard deviation (SD) of the in vivo data. The in vitro sagittal, coronal, and transverse plane tibial kinematics were almost entirely within ±1 SD of the in vivo data. The model showed changes consistent with the flexible flatfoot pathology including the collapse of the medial arch and abduction of the forefoot, despite unexpected hindfoot inversion. Unlike previous static flatfoot models that use simplified tibial degrees of freedom to characterize only the midpoint of the stance phase or at most three gait positions, our simulator represented the stance phase of gait with ten discrete positions and with six tibial degrees of freedom. This system has the potential to replicate foot function to permit both noninvasive and surgical treatment evaluations throughout the stance phase of gait, perhaps eliciting unknown advantages or disadvantages of these treatments at other points in the gait cycle.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 136
Author(s):  
Ophelie Lariviere ◽  
Thomas Provot ◽  
Laura Valdes-Tamayo ◽  
Maxime Bourgain ◽  
Delphine Chadefaux

Although accelerometers’ responses during running are not perfectly understood, they are widely used to study performance and the risk of injury. To outline the typical tibial acceleration pattern during running, this study aims to investigate the repeatability of acceleration signals with respect to the ground reaction force waveforms. Ten amateur runners were asked to perform ten trials along a straight line. One participant was asked to perform this protocol over ten sessions. Tibial accelerations and ground reaction forces were measured during the stance phase. The coefficient of multiple correlation R was computed to study the intra- and inter-test and subject repeatability of accelerometric and force waveforms. A good (R>0.8) intra- and inter-test repeatability was observed for all measured signals. Similar results were observed for intra-subject repeatability. A good inter-subject repeatability was observed only for the longitudinal acceleration and vertical and antero-posterior forces. Typical accelerometric signatures were outlined for each case studied.


Author(s):  
Zbigniew Borysiuk ◽  
Natalia Markowska ◽  
Mariusz Konieczny ◽  
Krzysztof Kręcisz ◽  
Monika Błaszczyszyn ◽  
...  

The objective of the study reported in this paper involved identifying the fencing attack (flèche versus lunge) that provides greater effectiveness in a real competition. Two hypotheses are presented in the study. The first hypothesis involves the greater effectiveness of the flèche with regard to bioelectric muscular tension, and the second hypothesis involves the reduction of movement time of the flèche. Therefore, analyses were conducted by the application of EMG (electromyography) signal, ground reaction forces, and parameters representing sensorimotor responses (RT—reaction time and MT—movement time). This study included six world-leading female épée fencers (mean age: 24.6 ± 6.2 years). Throughout the procedure, the subjects performed flèche and lunge touches at the command of the coach based on visual stimuli. The experimental results indicated the greater effectiveness of the flèche compared with the lunge with regard to increases in EMG values (p = 0.027) in the lateral and medial gastrocnemius muscles and decreases in the duration of the movement phase (p = 0.049) and vertical force of the rear leg (p = 0.028). In conclusion, higher levels of EMG and ground reaction forces were generated during the flèche compared with the lunge, which promotes an improvement in the explosive force and contributes to a reduction in the movement phase of the entire offensive action.


Sign in / Sign up

Export Citation Format

Share Document