scholarly journals Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 578
Author(s):  
Maki Hirata ◽  
Manita Wittayarat ◽  
Zhao Namula ◽  
Quynh Anh Le ◽  
Qingyi Lin ◽  
...  

Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, how this system functions in mammalian oocytes and embryos remains unclear. The present study was conducted to clarify whether blastocyst genome editing can be performed by treatment with lipofection reagent, guide RNA, and Cas9 for 5 h without using electroporation or microinjection. A mosaic mutation was observed in blastocysts derived from zona pellucida (ZP)-free oocytes following lipofection treatment, regardless of the target genes. When lipofection treatment was performed after in vitro fertilization (IVF), no significant differences in the mutation rates or mutation efficiency were found between blastocysts derived from embryos treated at 24 and 29 h from the start of IVF. Only blastocysts from embryos exposed to lipofection treatment at 29 h after IVF contained biallelic mutant. Furthermore, there were no significant differences in the mutation rates or mutation efficiency between blastocysts derived from embryos at the 2- and 4-cell stages. This suggests that lipofection-mediated gene editing can be performed in ZP-free oocytes and ZP-free embryos; however, other factors affecting the system efficiency should be further investigated.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qingyi Lin ◽  
Quynh Anh Le ◽  
Koki Takebayashi ◽  
Chommanart Thongkittidilok ◽  
Manita Wittayarat ◽  
...  

Abstract Objective Lipofection-mediated introduction of the CRISPR/Cas9 system in porcine zygotes provides a simple method for gene editing, without requiring micromanipulation. However, the gene editing efficiency is inadequate. The aim of this study was to improve the lipofection-mediated gene editing efficiency by optimizing the timing and duration of lipofection. Results Zona pellucida (ZP)-free zygotes collected at 5, 10, and 15 h from the start of in vitro fertilization (IVF) were incubated with lipofection reagent, guide RNA (gRNA) targeting GGTA1, and Cas9 for 5 h. Lipofection of zygotes collected at 10 and 15 h from the start of IVF yielded mutant blastocysts. Next, ZP-free zygotes collected at 10 h from the start of IVF were incubated with lipofection reagent, gRNA, and Cas9 for 2.5, 5, 10, or 20 h. The blastocyst formation rate of zygotes treated for 20 h was significantly lower (p < 0.05) than those of the other groups, and no mutant blastocysts were obtained. Moreover, the mutation rates of the resulting blastocysts decreased as the incubation time increased. In conclusion, a lipofection-mediated gene editing system using the CRISPR/Cas9 system in ZP-zygotes is feasible; however, further improvements in the gene editing efficiency are required.


2018 ◽  
Vol 103 (11) ◽  
pp. 4241-4252 ◽  
Author(s):  
Yohan Choi ◽  
Katherine L Rosewell ◽  
Mats Brännström ◽  
James W Akin ◽  
Thomas E Curry ◽  
...  

Abstract Context Fos null mice failed to ovulate and form a corpus luteum (CL) even when given exogenous gonadotropins, suggesting that ovarian Fos expression is critical for successful ovulation and CL formation. However, little is known about FOS in the human ovary. Objectives To determine the expression, regulation, and function of FOS in human periovulatory follicles. Design/Participants Timed periovulatory follicles were obtained from normally cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. Main Outcome Measures The in vivo expression after human chorionic gonadotropin (hCG) administration and in vitro regulation of FOS, JUN, JUNB, and JUND was evaluated at the mRNA and protein level. Binding of progesterone receptor (PGR) and FOS to their target genes was assessed by chromatin immunoprecipitation analyses. Prostaglandin E2 (PGE2) and progesterone were measured. Results The expression of FOS, JUNB, and JUND drastically increased in ovulatory follicles after hCG administration. In human granulosa/lutein cell cultures, hCG increased the expression of FOS and JUN proteins. Inhibitors of PGR and epidermal growth factor (EGF) receptors reduced hCG-induced increases in the expression and phosphorylation of FOS. PGR bound to the FOS gene. A selective FOS inhibitor blocked hCG-induced increases in PGE2 and the expression of prostaglandin (PG) synthases and transporters (PTGES, SLCO2A1, and ABCC1). FOS bound to the promoter regions of these genes. Conclusions The increase of FOS/activator protein 1 in human periovulatory follicles after hCG administration is mediated by collaborative actions of PGR and EGF signaling and critical for the upregulated expression of key ovulatory genes required for the rise in ovulatory PG in human granulosa cells.


2001 ◽  
Vol 76 (3) ◽  
pp. S219
Author(s):  
M.J Heard ◽  
R.B Lathi ◽  
J.E Buster ◽  
P Cisneros ◽  
P Casson ◽  
...  

2020 ◽  
Vol 34 (1) ◽  
pp. 157-170
Author(s):  
Norman K. Swazo ◽  

In November 2018, Dr. He Jiankui announced the birth of two baby girls born through the use of in vitro fertilization technology and the use of the gene-editing tool CRISPR-Cas9. There has been nigh uniform international condemnation of the clinical trial for violating international norms governing genomic research, especially research in human embryos that has implications for the germline. At issue also is the question whether the parents and the clinical research team harmed, and therefore wronged, the two girls. Here this question is engaged through application of the reasoning Derek Parfit has provided on the non-identity problem. One concludes that on this reasoning the parents are not morally culpable on that argument, although there is other reasoning that is to be considered to resist the Parfitian conclusion.


2019 ◽  
Vol 31 (1) ◽  
pp. 165
Author(s):  
M. Poirier ◽  
D. Miskel ◽  
F. Rings ◽  
K. Schellander ◽  
M. Hoelker

Successful genome editing of blastocysts using zygote microinjection with transcription activator-like effector nucleases has already been accomplished in cattle as well as a limited number of CRISPR-Cas9 microinjections of zygotes, mostly using RNA. Recent editing of the Pou5f1 gene in bovine blastocysts using CRISPR-Cas9, clarifying its role in embryo development, supports the viability of this technology to produce genome edited cattle founders. To further this aim, we hypothesise that editing of the coatomer subunit α (COPA) gene, a protein carrier associated with the dominant red coat colour phenotype in Holstein cattle, is feasible through zygote microinjection. Here, we report successful gene editing of COPA in cattle zygotes reaching the blastocyst stage, a necessary step in creating genome edited founder animals. A single guide RNA was designed to target the sixth exon of COPA. Presumptive zygotes derived from slaughterhouse oocytes by in vitro maturation and fertilization were microinjected either with the PX458 plasmid (Addgene #48138; n=585, 25ng µL−1) or with a ribonucleoprotein effector complex (n=705, 20, 50, 100, and 200ng µL−1) targeting the sixth exon of COPA. Plasmid injected zygotes were selected for green fluorescent protein (GFP) fluorescence at Day 8, whereas protein injected zygotes were selected within 24h post-injection based on ATTO-550 fluorescence. To assess gene editing rates, single Day 8 blastocysts were PCR amplified and screened using the T7 endonuclease assay. Positive structures were Sanger sequenced using bacterial cloning. For plasmid injected groups, the Day 8 blastocyst rate averaged 30.3% (control 18.1%). The fluorescence rate at Day 8 was 6.3%, with a GFP positive blastocyst rate of 1.6%, totaling 7 blastocysts. The T7 assay revealed editing in GFP negative blastocysts and morulae as well, indicating that GFP is not a precise selection tool for successful editing. In protein injection groups, the highest concentration yielded the lowest survival rates (200ng µL−1, 50.0%, n=126), whereas the lowest concentration had the highest survival rate (20ng µL−1, 79.5%, n=314). The Day 8 blastocyst rate reached an average of 25% across groups. However, no edited blastocysts were observed in the higher concentration groups (100,200ng µL−1). The highest number of edited embryos was found in the lowest concentration injected (20ng µL−1, 4/56). Edited embryos showed multiple editing events neighbouring the guide RNA target site ranging from a 12-bp insertion to a 9-bp deletion, as well as unedited sequences. Additionally, one embryo showed a biallelic 15-bp deletion of COPA (10 clones). One possible reason for the presence of only mosaic editing and this in-frame deletion could be that a working copy of COPA is needed for proper blastocyst formation and that a knockout could be lethal. Additional validation and optimization is needed to elucidate the functional role of COPA during early development and its modulation when creating founder animals.


1994 ◽  
Vol 41 (1) ◽  
pp. 249
Author(s):  
C. Matás ◽  
E. Martínez ◽  
J.M. Vázquez ◽  
J. Roca ◽  
J. Gadea ◽  
...  

2007 ◽  
Vol 26 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Zayil Salazar ◽  
Yvonne Ducolomb ◽  
Miguel Betancourt ◽  
Edmundo Bonilla ◽  
Leticia Cortés ◽  
...  

Malathion is a widely used pesticide and there is evidence that it could alter mammal’s germ and somatic cells, as well as cell lines. There are not enough studies showing how the nonacute malathion doses affect gene expression. This study analyzes gene expression alterations in pig morular embryos exposed in vitro , for 96 h, to several malathion concentrations after in vitro fertilization. cDNA libraries of isolated morular embryos were created and differential screenings performed to identify target genes. Seven clones were certainly identified. Genes related to mitochondrial metabolism as cytochrome c subunits I and III, nuclear genes such as major histocompatibility complex I (MHC I), and a hypothetical protein related with a splicing factor were the target of malathion’s deregulation effect. The widespread use of malathion as a pesticide should be regarded with reproductive implications and more detailed analysis would yield more about molecular mechanisms of malathion injury on embryo cells.


Sign in / Sign up

Export Citation Format

Share Document