80 Biallelic CRISPR-Cas9 editing of gene associated with coat colour in microinjected bovine zygotes reaching the blastocyst stage

2019 ◽  
Vol 31 (1) ◽  
pp. 165
Author(s):  
M. Poirier ◽  
D. Miskel ◽  
F. Rings ◽  
K. Schellander ◽  
M. Hoelker

Successful genome editing of blastocysts using zygote microinjection with transcription activator-like effector nucleases has already been accomplished in cattle as well as a limited number of CRISPR-Cas9 microinjections of zygotes, mostly using RNA. Recent editing of the Pou5f1 gene in bovine blastocysts using CRISPR-Cas9, clarifying its role in embryo development, supports the viability of this technology to produce genome edited cattle founders. To further this aim, we hypothesise that editing of the coatomer subunit α (COPA) gene, a protein carrier associated with the dominant red coat colour phenotype in Holstein cattle, is feasible through zygote microinjection. Here, we report successful gene editing of COPA in cattle zygotes reaching the blastocyst stage, a necessary step in creating genome edited founder animals. A single guide RNA was designed to target the sixth exon of COPA. Presumptive zygotes derived from slaughterhouse oocytes by in vitro maturation and fertilization were microinjected either with the PX458 plasmid (Addgene #48138; n=585, 25ng µL−1) or with a ribonucleoprotein effector complex (n=705, 20, 50, 100, and 200ng µL−1) targeting the sixth exon of COPA. Plasmid injected zygotes were selected for green fluorescent protein (GFP) fluorescence at Day 8, whereas protein injected zygotes were selected within 24h post-injection based on ATTO-550 fluorescence. To assess gene editing rates, single Day 8 blastocysts were PCR amplified and screened using the T7 endonuclease assay. Positive structures were Sanger sequenced using bacterial cloning. For plasmid injected groups, the Day 8 blastocyst rate averaged 30.3% (control 18.1%). The fluorescence rate at Day 8 was 6.3%, with a GFP positive blastocyst rate of 1.6%, totaling 7 blastocysts. The T7 assay revealed editing in GFP negative blastocysts and morulae as well, indicating that GFP is not a precise selection tool for successful editing. In protein injection groups, the highest concentration yielded the lowest survival rates (200ng µL−1, 50.0%, n=126), whereas the lowest concentration had the highest survival rate (20ng µL−1, 79.5%, n=314). The Day 8 blastocyst rate reached an average of 25% across groups. However, no edited blastocysts were observed in the higher concentration groups (100,200ng µL−1). The highest number of edited embryos was found in the lowest concentration injected (20ng µL−1, 4/56). Edited embryos showed multiple editing events neighbouring the guide RNA target site ranging from a 12-bp insertion to a 9-bp deletion, as well as unedited sequences. Additionally, one embryo showed a biallelic 15-bp deletion of COPA (10 clones). One possible reason for the presence of only mosaic editing and this in-frame deletion could be that a working copy of COPA is needed for proper blastocyst formation and that a knockout could be lethal. Additional validation and optimization is needed to elucidate the functional role of COPA during early development and its modulation when creating founder animals.

2007 ◽  
Vol 19 (1) ◽  
pp. 173 ◽  
Author(s):  
J. Braun ◽  
C. Otzdorff ◽  
T. Tsujioka ◽  
S. Hochi

The effects of slow freezing or vitrification as well as exposure to the cryoprotective media without cooling and warming of in vitro-matured domestic cat oocytes on the in vitro development to the blastocyst stage was investigated. Cumulus–oocyte complexes were matured for 24 h in TCM-199 supplemented with 3 mg mL−1 BSA, 1 µg mL−1 estradiol, 0.1 IU mL−1 FSH, and 0.0063 IU mL−1 LH. Denuded oocytes with a detectable first polar body were inseminated with 2 × 106 cells mL−1 cauda epididymal spermatozoa for 22 h in TALP solution. Presumptive zygotes were cultured in modified SOF medium at 38.5°C in 5% CO2 in air. For slow freezing, oocytes were equilibrated for 20 min at ambient temperatures in PBS with 20% FCS containing either 1.5 M ethylene glycol (EG) + 0.2 M sucrose or 1.5 M EG + 0.2 M trehalose. Oocytes were loaded into 0.25-mL straws, cooled to −7°C at 2°C min, held for 5 min, seeded, cooled down to −30°C at 0.3°C min, and finally plunged into liquid nitrogen. The straws were thawed for 5 s at room temperature and for 30 s in a waterbath at 30°C. Oocytes were washed 3 times before insemination. In vitro-matured oocytes were exposed to the cryoprotective media for 30 min before they were inseminated and then they were cultured for 7 days. For vitrification (Hochi et al. 2004 Theriogenology 61, 267–275), a minimum-volume cooling procedure using Cryotop (Kitazato Supply Co., Tokyo, Japan) as a cryodevice was applied. No blastocysts could be obtained after slow freezing with a cryoprotective medium containing 0.2 M sucrose. Simple exposure to the same freezing medium after in vitro maturation without cryopreservation resulted in a blastocyst rate of 7.9% (control oocytes, 10.7%; not significant (NS); chi-square analysis). Use of trehalose as an extracellular cryoprotectant resulted in the harvest of one blastocyst (0.6%) after slow freezing. Exposure to the same cryoprotective medium resulted in a blastocyst rate of 10.0% (fresh control, 10.9%; NS). After exposure of in vitro-matured oocytes to the vitrification solution, a blastocyst rate of 16.0% was observed (8/50), which was not statistically different from the blastocyst rate in fresh control oocytes (16.3%; 15/92). No blastocysts could be obtained after vitrification (0/64). The results (Table 1) demonstrate that there is no obvious toxic effect of the cryoprotectants employed here for slow freezing or vitrification on the in vitro-matured oocytes, but the developmental potential of cryopreserved oocytes to the blastocyst stage is severely impaired. Table 1. Effect of slow freezing or exposure to freezing medium of matured cat oocytes on the development to the blastocyst stage in vitro


2015 ◽  
Vol 27 (1) ◽  
pp. 136
Author(s):  
M. Hoelker ◽  
A. Kassens ◽  
E. Held ◽  
C. Wrenzycki ◽  
U. Besenfelder ◽  
...  

The in vitro production (IVP) of bovine embryos is a well-established technique that has been available for nearly 20 years. However, there remain major differences between IVP-derived blastocysts and their in vivo-derived counterparts. Many studies have pointed out that most of these differences are due to the in vitro developmental environment. To circumvent these negative effects due to in vitro culture conditions, a new method – intrafollicular oocyte transfer (IFOT) – was established in the present study. Using modified ovum pick-up (OPU) equipment, in vitro-matured oocytes derived from slaughterhouse ovaries were injected into the dominant preovulatory follicle of synchronised heifers (follicular recipients) enabling subsequent ovulation, in vivo fertilization, and in vivo development. A total of 810 in vitro-matured oocytes were transferred into 14 heifers. Subsequently, 222 embryos (27.3%) were recovered after uterine flushing at Day 7. Based on the number of cleaved embryonic stages, 64.2% developed to the blastocyst stage, which did not differ from the IVP-derived embryos (58.2%). Interestingly, lipid content of IFOT-derived blastocysts did not differ from the fully in vivo-produced embryos, whereas IVP-derived blastocysts showed significantly higher lipid droplet accumulation compared with fully in vivo-derived and IFOT-derived blastocysts (P < 0.05). Accordingly, IFOT blastocysts showed significantly higher survival rates after cryopreservation than complete IVP-derived embryos (77% v. 10%), which might be attributed to a lower degree of lipid accumulation. In agreement, transfer of frozen-thawed IFOT blastocysts to synchronized recipients (uterine recipients) resulted in much higher pregnancy rates compared with transfer of IVP-derived blastocysts (42.1 v. 13.8%) but did not differ from frozen-thawed ex vivo blastocysts (52.4%). Of these presumed IFOT pregnancies, 7 went to term, and microsatellite analysis confirmed that 5 calves were indeed derived from IFOT, whereas 2 were caused by fertilization of the follicular recipient's own oocyte after AI. Taken together, IFOT-derived blastocysts closely resemble in vivo-derived blastocysts, confirming earlier suggestions that the ability to develop to the blastocyst stage is already determined in the matured oocyte, whereas the quality in terms of lipid content and survival rate after cryopreservation is affected by the environment thereafter. However, to the best of our knowledge, this is the first study reporting healthy calves after intrafollicular transfer of in vitro-matured oocytes.


2009 ◽  
Vol 21 (1) ◽  
pp. 206 ◽  
Author(s):  
M. Rubessa ◽  
M. Di Fenza ◽  
E. Mariotti ◽  
S. Di Francesco ◽  
C. de Dilectis ◽  
...  

It was previously demonstrated that the kinetics of early cleavage could be used to discriminate between bovine bulls with high and low field fertility (Ward F et al. 2001 Mol. Reprod. Dev. 60, 47–55). Marked differences exist in the kinetics of sperm penetration between bulls, and this may be a useful predictor of field fertility in cattle (Ward F et al. 2002 Theriogenology 57, 2105–2117). It is well known that the ability to fertilize oocytes in vitro and to sustain embryo development varies significantly among buffalo bulls. Therefore, the aim of this work was to evaluate whether the speed of oocyte penetration after IVF was correlated with the blastocyst rates obtainable with different bulls in buffalo species. In Experiment 1, in vitro-matured buffalo oocytes were co-incubated with MitoTracker-labeled spermatozoa (Ward F et al. 2002 Theriogenology 57, 2105–2117) from 6 different bulls, over 2 replicates. Oocytes were subsequently fixed every 3 h (up to 18 h) postinsemination (pi). At each time point, oocytes were denuded, dezoned, fixed in ethanol overnight, and stained with 4′,6-diamidino-2-phenylindole for nuclei examination under a fluorescence microscope. In Experiment 2, in vitro-matured oocytes were fertilized with sperm from the same 6 bulls and were cultured to the blastocyst stage, over 4 replicates. Bulls were tested, collectively, on each batch of ovaries in both experiments. Differences in the percentages of monospermic penetration among bulls were analyzed by chi-square test. Correlation and multiple regression analyses were also carried out between the speed of penetration and blastocyst yields. Marked differences in the kinetics of sperm penetration were found among buffalo bulls, as shown in Table 1. Interestingly, a correlation was found between the blastocyst rate and the percentage of oocytes penetrated at 6 h (r = 0.71; P < 0.01), at 9 h (r = 0.65; P < 0.05), at 12 h (r = 0.77; P < 0.01), and at 18 h pi (r = 0.59; P < 0.05). Regression analysis showed that the optimal time of penetration for predicting the blastocyst rate was 12 h pi (R2 = 0.6). In conclusion, the kinetics of sperm penetration may be a useful marker to predict the in vitro-fertilizing ability of buffalo bulls. The great variability in the speed of oocyte penetration suggests inserting this assessment in the preliminary screening of bulls before their utilization in IVF programs. This may be helpful in selecting high-fertility bulls and identifying the optimal gamete co-incubation times for each bull used. Table 1.Percentage of oocytes penetrated at each time point (hpi, h postinsemination) by different bulls1


2020 ◽  
Vol 32 (2) ◽  
pp. 193
Author(s):  
D. Miskel ◽  
L. Beunink ◽  
M. Poirier ◽  
V. Havlicek ◽  
F. Rings ◽  
...  

In recent years, CRISPR/Cas9 has been used to efficiently edit the genomes of embryos in many animal models. Due to smaller anatomy, lower costs, and multiple ovulations, it is relatively simple to derive large numbers of invivo fertilized zygotes for gene editing experiments in small mammal models. In cattle, however, harvesting invivo fertilized zygotes generally requires a highly invasive surgical procedure. Here, we use the combination of a minimally invasive endoscopic method for harvesting invivo fertilized zygotes by oviductal flushing of superovulated heifers and the subsequent electroporation of zygotes with CRISPR/Cas9 ribonucleoproteins (RNP). After superstimulation of 21 heifers, on average 12 zygotes were flushed per animal with fetal bovine serum, then stored in synthetic oviductal fluid (SOFaa) before electroporation. Targeting exon 1 of the tyrosinase (Tyr) gene, zygotes were electroporated in 1-mm gap cuvettes (Biorad) in groups of ~20 in 20μL of OptiMEM media containing 3μM Cas9 RNP (IDT Cas9 protein pre-incubated with anti-Tyr guide RNA). Electroporation was performed in 3 replicates of 3 electrical potentials, namely 20, 25, and 30V using a Biojet CF 50. The other electroporation parameters were fixed at 5 repetitions of 2-ms square wave pulses at 100-ms intervals. The zygotes were than cultured under standard embryo culture conditions (SOFaa + 0.3% bovine serum albumin, 5% CO2, 5% O2, 39°C, humidified air). Embryo survival, cleavage, and developmental rates to the blastocyst stage were tracked. Statistical significance between groups was determined by pairwise one-way ANOVA using Sidak correction for multiple comparisons. Electroporation of invivo-derived zygotes using 20V yielded significantly higher survival (83.6% vs. 42.8% vs. 20.7% for 20, 25, and 30V, respectively), cleavage (65.6% vs. 37.9% vs. 40.0%), and developmental rates (47.5% vs. 21.4% vs. 16.5%) than 25 or 30V. There was no statistical difference between 25 and 30V. Subsequently, editing rates were determined using the T7 mismatch assay and verified with Sanger sequencing followed by sequence alignment and analysis using Tracking of Indels by Decomposition (TIDE) software (https://tide.nki.nl/). Although there was high variance between electroporation groups, blastocyst editing rates of up to 80.0% were achieved using 30V. To our knowledge, these are the first confirmed gene-edited bovine embryos produced from invivo fertilized zygotes. This method offers the ability to utilise the embryos of high-value cows or cows with known genotypes for genetic engineering experiments. In addition, given that electroporated bovine zygotes can be transferred back to the oviduct endoscopically, our future attempts will focus on genome editing in bovine embryos developed nearly completely within the physiological invivo environment.


Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Shayan Nejat-Dehkordi ◽  
Ebrahim Ahmadi ◽  
Abolfazl Shirazi ◽  
Hassan Nazari ◽  
Naser Shams-Esfandabadi

Summary Culture conditions have a profound effect on the quality of in vitro-produced embryos. Co-culturing embryos with somatic cells has some beneficial effects on embryonic development. Considering the ability of stem cells to secrete a broad range of growth factors with different biological activities, we hypothesized that bovine amniotic membrane stem cells (bAMSCs) might be superior to bovine oviduct epithelial cells (BOECs) in supporting embryonic development and enhancing their cryo-survival. Bovine abattoir-derived oocytes were matured and fertilized in vitro. The resultant presumptive zygotes were then cultured up to the blastocyst stage in the following groups: (i) co-culture with bAMSCs, (ii) co-culture with BOECs, and (iii) cell-free culture (Con). Embryos that reached the blastocyst stage were vitrified and warmed, and their post-warming re-expansion, survival and hatching rates were evaluated after 72 h culture. Results showed that the cleavage, blastocyst, and 2 h post-warming re-expansion rates of embryos did not differ between groups. However, their survival rates in BOEC and bAMSC groups were significantly higher compared with the control (72.7, 75.6 and 37.5%, respectively, P < 0.05). In conclusion, our results showed that the cryo-survivability of IVF-derived bovine embryos could be improved through co-culturing with bAMSCs. Moreover, considering the possibility to provide multiple passages from bAMSCs compared with BOECs, due to their stemness properties and their ability to produce growth factors, the use of bAMSCs is a good alternative to BOECs in embryo co-culture systems.


Author(s):  
Shaoting Weng ◽  
Yitian Zhao ◽  
Changhong Yu ◽  
Xiaofan Wang ◽  
Xuehan Xiao ◽  
...  

AbstractAn ideal rAAV gene editing system not only effectively edits genes at specific site, but also prevents the spread of the virus from occurring off-target or carcinogenic risks. This is important for gene editing research at specific site in vivo. We report a single rAAV containing SaCas9 and guide RNAs under the control of subtle EF1a and tRNA promoters. The capacity of rAAV was compressed, and the editing efficiency was similar to that of the classical Cas9 system in vitro and in vivo. And we inserted the sequence of the green fluorescent protein eGFP into rAAV. The number of cells infected with the rAAV and the region in which the rAAV spreads were known by the fluorescent expression of eGFP in cells. In addition, we demonstrated that myostatin gene in the thigh muscles of C57BL/10 mice was knocked out by the rAAV9-SaCas9 system to make muscle mass increased obviously. The protein eGFP into rAAV has significant implications for our indirect analysis of the editing efficiency of SaCas9 in the genome of the target tissue and reduces the harm caused by off-target editing and prevents other tissue mutations. The rAAV system has substantial potential in improving muscle mass and preventing muscle atrophy.


2015 ◽  
Author(s):  
Serif Senturk ◽  
Nitin H Shirole ◽  
Dawid D. Nowak ◽  
Vincenzo Corbo ◽  
Alexander Vaughan ◽  
...  

The Cas9/CRISPR system is a powerful tool for studying gene function. Here we describe a method that allows temporal control of Cas9/CRISPER activity based on conditional CAS9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 enables conditional rapid and reversible Cas9 expression in vitro and efficient gene-editing in the presence of a guide RNA. Further, we show that this strategy can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest, without the latter being co-modulated. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic identification of essential genes and the interrogation of genes functional interactions.


Author(s):  
Emily Xia ◽  
Yiqian Zhang ◽  
Huibi Cao ◽  
Jun Li ◽  
Rongqi Duan ◽  
...  

Cystic Fibrosis (CF) is an inherited monogenic disorder, amenable to gene based therapies. Because CF lung disease is currently the major cause of mortality and morbidity, and lung airway is readily accessible to gene delivery, the major CF gene therapy effort at present is directed to the lung. Although airway epithelial cells are renewed slowly, permanent gene correction through gene editing or targeting in airway stem cells is needed to perpetuate the therapeutic effect. Transcription activator-like effector nuclease (TALEN) has been utilized widely for a variety of gene editing applications. The stringent requirement for nuclease binding target sites allows for gene editing with precision. In this study, we engineered helper-dependent adenoviral (HD-Ad) vectors to deliver a pair of TALENs together with donor DNA targeting the human AAVS1 locus. With homology arms of 4 kb in length, we demonstrated precise insertion of either a LacZ reporter gene or a human CFTR minigene into the target site. Using the LacZ reporter, we determined the efficiency of gene integration to be about 5%. In the CFTR vector transduced cells, we have detected both CFTR mRNA and protein expression by qPCR and Wetern analysis, respectively. We have also confirmed CFTR function correction by flurometric Image Plate Reader&nbsp;(FLIPR) and iodide efflux assays. Taking together, these findings suggest a new direction for future in vitro and in vivo studies in CF gene editing.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1882
Author(s):  
Giovana Acha ◽  
Ricardo Vergara ◽  
Marisol Muñoz ◽  
Roxana Mora ◽  
Carlos Aguirre ◽  
...  

In potato (Solanum tuberosum L.), protoplast techniques are limited to a few genotypes; thus, the use of regular regeneration procedures of multicellular explants causes us to face complexities associated to CRISPR/Cas9 gene editing efficiency and final identification of individuals. Geminivirus-based replicons contained in T-DNAs could provide an improvement to these procedures considering their cargo capability. We built a Bean yellow dwarf virus-derived replicon vector, pGEF-U, that expresses all the editing reagents under a multi-guide RNA condition, and the Green Fluorescent Protein (GFP) marker gene. Agrobacterium-mediated gene transfer experiments were carried out on ‘Yagana-INIA’, a relevant local variety with no previous regeneration protocol. Assays showed that pGEF-U had GFP transient expression for up to 10 days post-infiltration when leaf explants were used. A dedicated potato genome analysis tool allowed for the design of guide RNA pairs to induce double cuts of genes associated to enzymatic browning (StPPO1 and 2) and to cold-induced sweetening (StvacINV1 and StBAM1). Monitoring GFP at 7 days post-infiltration, explants led to vector validation as well as to selection for regeneration (34.3% of starting explants). Plant sets were evaluated for the targeted deletion, showing individuals edited for StPPO1 and StBAM1 genes (1 and 4 lines, respectively), although with a transgenic condition. While no targeted deletion was seen in StvacINV1 and StPPO2 plant sets, stable GFP-expressing calli were chosen for analysis; we observed different repair alternatives, ranging from the expected loss of large gene fragments to those showing punctual insertions/deletions at both cut sites or incomplete repairs along the target region. Results validate pGEF-U for gene editing coupled to regular regeneration protocols, and both targeted deletion and single site editings encourage further characterization of the set of plants already generated.


Zygote ◽  
2020 ◽  
Vol 28 (3) ◽  
pp. 217-222
Author(s):  
Silvia Mateo ◽  
Francesca Vidal ◽  
Beatriz Carrasco ◽  
Ignacio Rodríguez ◽  
Buenaventura Coroleu ◽  
...  

SummaryThe aim of this study was to provide a more comprehensive understanding of 1PN intracytoplasmic sperm injection (ICSI) zygotes. To achieve this objective, we assessed whether all 1PN-derived embryos showed a similar morphokinetic pattern, and if the morphokinetic behaviour of 1PN-derived embryos was comparable with that of 2PN-derived embryos. In total, 149 1PN ICSI zygotes (study group) and 195 2PN ICSI zygotes (control group) were included in the study. Embryo development potential was evaluated in terms of blastocyst rate. Morphokinetic parameters, including the pronucleus diameter and kinetics of in vitro development, were also analyzed. Embryos derived from 1PN ICSI zygotes showed impaired development compared with 2PN-derived embryos, with blastocyst rates of 28.9% and 67.2%, respectively. The diameter of the pronucleus of 1PN zygotes was larger than that of 2PN zygotes. When compared with 2PN-derived embryos, those derived from 1PN zygotes had a visible pronucleus for a shorter time, in addition to a longer syngamy time and slower kinetic behaviour from two to nine cells. When 1PN-derived blastocysts and 2PN-derived blastocysts were compared, the developmental kinetics were similar in both groups, except for a delayed and longer duration of the compaction phase in 1PN-derived embryos. In conclusion, monopronucleated ICSI zygotes present differences in developmental capacity and morphokinetic behaviour compared with 2PN ICSI zygotes, showing particular morphokinetic parameters related to pronucleus formation. Only the 1PN ICSI-derived embryos that reached the blastocyst stage have similar morphokinetic development to blastocysts from 2PN zygotes.


Sign in / Sign up

Export Citation Format

Share Document