scholarly journals Bacterial Culture Filtrates Antinematode Activity of Abomasum Bacterial Culture Filtrates against Haemonchus contortus in Small Ruminants

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1843
Author(s):  
Asfa Nazish ◽  
Fozia ◽  
Baharullah Khattak ◽  
Taj Ali Khan ◽  
Ijaz Ahmad ◽  
...  

Haemonchosis is a parasitic disease of small ruminants that adversely affects livestock production. Haemonchus contortus is one of the most prevalent nematode parasites that infect the abomasum of small ruminants. This parasite reduces milk production, overall growth and sometimes causes the death of the infected animals. The evaluation of the biocontrol potential of some abomasum bacterial isolates against H. contortus is investigated in this study. Out of which, three isolates—Comamonas testosteroni, Comamonas jiangduensis, Pseudomonas weihenstephanesis—show significant effect against the nematode L3, adult, and egg hatch inhibition assays. Various concentrations of metabolites from these bacteria are prepared and applied in different treatments compared with control. In the case of adult mortality assay, 50% metabolites of C. testosteroni and P. weihenstephanesis show 46% adult mortality, whereas C. jiangduensis shows 40% mortality. It is observed that decreasing the concentration of bacterial metabolite, lowers nematode mortality. The minimum nematode mortality rate is recorded at the lowest filtrates concentration of all the bacterial isolates. The same trend is observed in egg hatch inhibition assay, where the higher concentration of bacterial culture filtrates shows 100% inhibition of H. contortus egg. It is concluded that the effect of bacterial culture filtrates against H. contortus is dose-dependent for their activity against nematode L3, adult, and inhibition of egg hatchment.

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 219 ◽  
Author(s):  
Dominika Mravčáková ◽  
Michaela Komáromyová ◽  
Michal Babják ◽  
Michaela Urda Dolinská ◽  
Alžbeta Königová ◽  
...  

The objective of this study is to evaluate the effect of dry wormwood and mallow on the gastrointestinal parasite of small ruminants Haemonchus contortus. Twenty-four experimentally infected lambs were randomly divided into four groups of six animals each: unsupplemented lambs, lambs supplemented with wormwood, lambs supplemented with mallow and animals supplemented with a mix of both plants. Faecal samples from the lambs were collected on day 23, 29, 36, 43, 50, 57, 64 and 75 post-infection for quantification of the number of eggs per gram (EPG). The mix of both plants contained phenolic acids (10.7 g/kg DM) and flavonoids (5.51 g/kg DM). The nematode eggs were collected and in vitro egg hatch test was performed. The aqueous extracts of both plants exhibited strong ovicidal effect on H. contortus, with ED50 and ED99 values of 1.40 and 3.76 mg/mL and 2.17 and 5.89 mg/mL, respectively, in the in vitro tests. Despite the great individual differences between the treated lambs in eggs reduction, the mean EPG of the untreated and treated groups did not differ (p > 0.05). Our results indicate that using wormwood and mallow as dietary supplements do not have a sufficient effect on lambs infected with H. contortus.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Suppression and modulation of the immune response of the host by nematode parasites have been reported widely. Rhodaneses or thiosulfate: cyanide sulfurtransferases are present in a wide range of organisms, such as archea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homology could bind by goat peripheral blood mononuclear cells (PBMCs) in vivo.Results: In the present study, we cloned and produced recombinant rhodanese protein originated from Haemonchus contortus (rHCRD), which was one of the parasitic nematodes of small ruminants. The effect of this protein on modulating the immunity of goat PBMC and monocyte was studied in the current work. The predominant localization of the natural HCRD protein was verified as the bowel wall and body surface of worms, according to the immunohistochemical tests. It was proved in this study that the serum produced by artificially infecting goats with H. contortus successfully recognized rHCRD which conjugated goat PBMCs. The rHCRD was co-incubated with goat PBMCs to observe the immunomodulatory effect on proliferation, apoptosis and secretion of cytokines exerted by HCRD. The results showed that the interaction of rHCRD suppressed proliferation of goat PBMCs stimulated by ConA but did not induce the apoptosis of goat PBMCs. After rHCRD exposure, the production of TNF-α and IFN-γ were significantly decreased, however, it significantly increased the secretion of IL-10 and TGF-β1 in goat PBMCs. Phagocytotic assay by FITC-dextran internalization showed that rHCRD inhibited the phagocytosis of goat monocytes. Moreover, rHCRD could down-regulate the expression of MHC-II on goat monocytes in a dose-dependent manner. Conclusions: These discoveries proposed a possible target as immunomodulator, which was potentially beneficial to illuminate the interaction between parasites and hosts in the molecular level and hunt for innovative protein species as candidate targets of drug and vaccine.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD downregulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression.Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD down-regulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression. Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD down-regulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression.Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo. Methods In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion. Results We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD downregulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression. Conclusions These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


Author(s):  
Arthur Hunduza ◽  
John Kagira ◽  
Naomi Maina ◽  
Dickson Andala ◽  
Kipyegon Cheruiyot ◽  
...  

The objective of this study was to evaluate in vitro ovicidal, larvicidal and adult mortality activity of bromelain encapsulated in chitosan nanocarriers against H. contortus. Bromelain was isolated from peels of ripe pineapple from Kiambu County, Kenya. Isolation of bromelain was conducted with several stages of fractionations with ammonia sulphate salt and dialysis. Encapsulation of bromelain was done by use of methyl cellulose-chitosan in order to control release and activity. The encapsulated chitosan nanocarriers were then subjected to in vitro ovicidal, larvicidal and adult mortality activity according to standard procedures. The results of the assays showed that encapsulated bromelain had an IC50 of 0.249 mg/ml, 0.251 mg/ml and 0.140 mg/ml on the egg hatch, larval and adult worm mortality assays, respectively. All these values showed better activity than bromelain although there was no significant difference (p˃0.05) between activities of encapsulated bromelain and bromelain. There was also a significant difference (p<0.05), between Albendazole and the rest of the test drugs. In conclusion, this study has shown that encapsulated bromelain has anthelmintic activity on different developmental stages of H. contortus parasite and that it should be further investigated and developed as a novel anthelmintic drug for control of H. contortus and hence improve production of small ruminants.


Author(s):  
Noorzaid Muhamad ◽  
Syahirah Sazeli ◽  
Resni Mona ◽  
Jannathul Firdous

The anthelmintic resistance has limited the control of gastrointestinal nematodes of small ruminants and thus has awakened interest in the study of plants extract as a source of anthelmintics. These experiments were carried out to evaluate the in vitro efficacy of Jatrophacurcas latex extract against Haemonchuscontortus larval motility. To evaluate the larvicidal activity, H.contortus L3 were incubated with the extracts with varying concentration of 5 mg/mL, 10 mg/mL, 15 mg/mL and 20 mg/mL at 27°C for 48, 72 and 96 hrs. The results were subjected to the Kruskal-Wallis test (P less than 0.05). The extracts showed dose-dependent larvicidal effects. These results suggest that J.curcas can be used to control gastrointestinal nematodes of small ruminants.


2021 ◽  
Vol 95 ◽  
Author(s):  
A.I.P. Sousa ◽  
C.R. Silva ◽  
H.N. Costa-Júnior ◽  
N.C.S. Silva ◽  
J.A.O. Pinto ◽  
...  

Abstract The continuous use of synthetic anthelmintics against gastrointestinal nematodes (GINs) has resulted in the increased resistance, which is why alternative methods are being sought, such as the use of natural products. Plant essential oils (EOs) have been considered as potential products for the control of GINs. However, the chemical composition and, consequently, the biological activity of EOs vary in different plant cultivars. The aim of this study was to evaluate the anthelmintic activity of EOs from cultivars of Ocimum basilicum L. and that of their major constituents against Haemonchus contortus. The EOs from 16 cultivars as well the pure compound linalool, methyl chavicol, citral and eugenol were used in the assessment of the inhibition of H. contortus egg hatch. In addition, the composition of three cultivars was simulated using a combination of the two major compounds from each. The EOs from different cultivars showed mean Inhibition Concentration (IC50) varying from 0.56 to 2.22 mg/mL. The cultivar with the highest egg-hatch inhibition, Napoletano, is constituted mainly of linalool and methyl chavicol. Among the individual compounds tested, citral was the most effective (IC50 0.30 mg/mL). The best combination of compounds was obtained with 11% eugenol plus 64% linalool (IC50 0.44 mg/mL), simulating the Italian Large Leaf (Richters) cultivar. We conclude that different cultivars of O. basilicum show different anthelmintic potential, with cultivars containing linalool and methyl chavicol being the most promising; and that citral or methyl chavicol isolated should also be considered for the development of new anthelmintic formulations.


Sign in / Sign up

Export Citation Format

Share Document