scholarly journals The Spatial Distribution of the House Mouse, Mus musculus domesticus, in Multi-Family Dwellings

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 197
Author(s):  
Shannon Sked ◽  
Chaofeng Liu ◽  
Salehe Abbar ◽  
Robert Corrigan ◽  
Richard Cooper ◽  
...  

The house mouse, Mus musculus domesticus, creates significant public health risks for residents in low-income multi-family dwellings (MFDs). This study was designed to evaluate the spatial distribution of house mice in MFDs. Four low-income high-rise apartment buildings in three cities in New Jersey were selected for building-wide monitoring on two occasions with approximately one year between the monitoring events. The presence of a house mouse infestation was determined by placing mouse bait stations with three different non-toxic baits for a one-week period in all accessible units as well as common areas. Permutation tests were conducted to evaluate house mouse infestation spatial patterns. All four analyzed buildings exhibited a significant correlation between apartments with house mouse infestations and whether they share a common wall or ceiling/floor at both sampling periods except one building during the second inspection, which contained a high number of isolated apartments. Foraging ranges, speed of locomotion, and dispersal behavior of house mice are relatively larger, faster, and more common, respectively, compared to common urban arthropod pests. This could lead to the conclusion that house mice are as likely to infest non-neighboring apartments as those that share a wall or floor/ceiling. However, these results demonstrate that house mouse infestations tend to occur among apartments that share common walls or ceilings/floors. This spatial distribution pattern can be utilized in rodent management plans to improve the efficiency of house mouse management programs in MFDs.

Virology ◽  
2018 ◽  
Vol 521 ◽  
pp. 92-98 ◽  
Author(s):  
Dagmar Čížková ◽  
Stuart J.E. Baird ◽  
Jana Těšíková ◽  
Sebastian Voigt ◽  
Ďureje Ľudovít ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 648
Author(s):  
Shannon Sked ◽  
Salehe Abbar ◽  
Richard Cooper ◽  
Robert Corrigan ◽  
Xiaodan Pan ◽  
...  

The house mouse, Mus musculus domesticus, is a common pest in multi-family residential apartment buildings. This study was designed to gain insights into residents’ impressions of house mice, develop more effective house mouse detection methods, and evaluate the effectiveness of building-wide house mouse management programs. Two high-rise apartment buildings in New Jersey were selected for this study during 2019–2020. Bait stations with three different non-toxic baits were used to detect house mouse activity. Two rodenticides (FirstStrike®—0.0025% difethialone and Contrac®—0.005% bromadiolone) were applied by researchers over a 63-day period and pest control operations were then returned to pest control contractors for rodent management. There were significant differences in the consumption rates of non-toxic baits and two toxic baits tested. A novel non-toxic bait, chocolate spread, was much more sensitive than the two commercial non-toxic baits for detecting mouse activity. The house mouse management programs resulted in an average 87% reduction in the number of infested apartments after three months. At 12 months, the number of infestations decreased by 94% in one building, but increased by 26% in the second building. Sustainable control of house mouse infestations requires the use of effective monitoring strategies and control programs coupled with preventative measures.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Megan Phifer-Rixey ◽  
Michael W Nachman

The house mouse, Mus musculus, was established in the early 1900s as one of the first genetic model organisms owing to its short generation time, comparatively large litters, ease of husbandry, and visible phenotypic variants. For these reasons and because they are mammals, house mice are well suited to serve as models for human phenotypes and disease. House mice in the wild consist of at least three distinct subspecies and harbor extensive genetic and phenotypic variation both within and between these subspecies. Wild mice have been used to study a wide range of biological processes, including immunity, cancer, male sterility, adaptive evolution, and non-Mendelian inheritance. Despite the extensive variation that exists among wild mice, classical laboratory strains are derived from a limited set of founders and thus contain only a small subset of this variation. Continued efforts to study wild house mice and to create new inbred strains from wild populations have the potential to strengthen house mice as a model system.


2018 ◽  
Vol 44 (2) ◽  
pp. 113-121
Author(s):  
Tatiana Forestier ◽  
Christophe Féron ◽  
Chloé Leroy ◽  
Patrizia D’Ettorre ◽  
Patrick Gouat

2005 ◽  
Vol 43 (1-2) ◽  
pp. 11-24 ◽  
Author(s):  
Georgios Tryfonopoulos ◽  
Basil Chondropoulos ◽  
Stella Fraguedakis-Tsolis

1989 ◽  
Vol 53 (1) ◽  
pp. 29-44 ◽  
Author(s):  
Janice Britton-Davidian ◽  
Joseph H. Nadeau ◽  
Henri Croset ◽  
Louis Thaler

SummaryThis paper examines the relation between chromosomal and nuclear-gene divergence in 28 wild populations of the house mouse semi-species, Mus musculus domesticus, in Western Europe and North Africa. Besides describing the karyotypes of 15 of these populations and comparing them to those of 13 populations for which such information was already known, it reports the results of an electrophoretic survey of proteins encoded by 34 nuclear loci in all 28 populations. Karyotypic variation in this taxon involves only centric (or Robertsonian) fusions which often differ in arm combination and number between chromosomal races. The electrophoretic analysis showed that the amount of genic variation within Robertsonian (Rb) populations was similar to that for all-acrocentric populations, i.e. bearing the standard karyotype. Moreover, divergence between the two types of populations was extremely low. These results imply that centric fusions in mice have not modified either the level or the nature of genic variability. The genetic similarity between Rb and all-acrocentric populations is not attributed to the persistence of gene flow, since multiple fusions cause marked reproductive isolation. Rather, we attribute this extreme similarity to the very recent origin of chromosomal races in Europe. Furthermore, genic diversity measures suggest that geographically separated Rb populations have in situ and independent origins. Thus, Rb translocations are probably not unique events, but originated repeatedly. Two models are presented to explain how the rapid fixation of a series of chromosomal rearrangements can occur in a population without lowering variability in the nuclear genes. The first model assumes that chromosomal mutation rates are between 10−3 and 10−4 and that populations underwent a series of transient bottlenecks in which the effective population size did not fall below 35. In the second model, genic variability is restored following severe bottlenecks, through gene flow and recombination.


Sign in / Sign up

Export Citation Format

Share Document