scholarly journals Novel Soil-Derived Beta-Lactam, Chloramphenicol, Fosfomycin and Trimethoprim Resistance Genes Revealed by Functional Metagenomics

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 378
Author(s):  
Inka Marie Willms ◽  
Maja Grote ◽  
Melissa Kocatürk ◽  
Lukas Singhoff ◽  
Alina Andrea Kraft ◽  
...  

Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Veronica Lazăr ◽  
Irina Gheorghe ◽  
Carmen Curutiu ◽  
Ioana Savin ◽  
Florica Marinescu ◽  
...  

Abstract Background The present study aims the characterization of antibiotic resistance phenotypes and encoding genes in bacterial strains isolated from some Romanian aquatic fishery lowland salted lakes. Material/Methods This study was conducted on 44 bacterial strains, mainly belonging to species used as microbiological indicators of fecal pollution isolated from four natural fishery lakes. All strains were tested for their antibiotic susceptibility by disk diffusion method. Simplex and multiplex PCR were performed to identify the β-lactams antibiotic resistance genes (blaNMD, blaOXA−48, blaVIM, blaIMP, blaCTX−M, blaTEM), sulfonamides (Sul1, Sul2), tetracyclines (TetA, TetB, TetC, TetD, TetM), aminoglycosides (aac3Ia), vancomycin (VanA, VanB, VanC), macrolides (ermA, ermB, ermC) as well as the plasmid-mediated quinolone resistance (PMQR) markers (QnrA, QnrB, QnrS), and class 1 integrons (Int1, drfA1-aadA1). Results The Enterococcus spp. isolates exhibited phenotypic resistance to vancomycin (35 %) and macrolides (erythromycin) (75 %); from the vancomycin – resistant strains, 5 % harboured VanA (E. faecalis), while the erythromycin resistant isolates were positive for the ermA gene (E. faecalis − 10 %, E. faecium − 5 %). The Gram- negative rods (GNR) exhibited a high level of resistance to β-lactams: cefuroxime (63 %), cefazolin (42 %), ceftriaxone (8 %), ceftazidime and aztreonam (4 % each). The genetic determinants for beta-lactam resistance were represented by blaCTX−M−like (33 %), blaNDM−like and blaIMP−like (8.33 %) genes. The resistance to non-β-lactam antibiotics was ascertained to the following genes: quinolones (QnrS − 4.16 %); sulfonamides (Sul1–75 %, Sul2–4.16 %); aminoglycosides (aac3Ia − 4.16 %); tetracyclines (tetA – 25 %, tetC − 15 %). The integrase gene was found in more than 50 % of the studied strains (58.33 %). Conclusions The cultivable aquatic microbiota from fishery lakes is dominated by enterococci and Enterobacterales strains. The GNR strains exhibited high levels of β-lactam resistance mediated by extended spectrum beta-lactamases and metallo-β-lactamases. The Enterococcus sp. isolates were highly resistant to macrolides and vancomycin. The high level and diversity of resistance markers, correlated with a high frequency of integrons is suggesting that this environment could act as an important reservoir of antibiotic resistance genes with a great probability to be horizontally transmitted to other associated species from the aquatic sediments microbiota, raising the potential zoonotic risk for fish consumers.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Chenyu Li ◽  
Xiaoming Wang ◽  
Zhuosong Cao ◽  
Chao Gao ◽  
...  

Abstract Background: Antibiotic resistance genes (ARGs) have become an important public health problem. In this study, we used metagenomic sequencing to analyze the composition of ARGs in certain original habitats of northeast China, comprising three different rivers and riverbank soils of the Heilongjiang River, Tumen River, and Yalu River. Results: Twenty types of ARG were detected in every water sample. The major ARGs were multidrug resistance genes, at approximately 0.5 copies/16s rRNA, accounting for 57.5% of the total ARG abundance. The abundance of multidrug, bacitracin, beta-lactam, macrolide‑lincosamide‑streptogramin, sulfonamide, fosmidomycin, and polymyxin resistance genes covered 96.9% of the total ARG abundance. No significant ecological boundary of ARG diversity was observed. The compositions of the resistance genes in the three rivers were very similar to each other, and 92.1% of ARG subtypes were shared by all water samples. Except for vancomycin resistance genes, almost all ARGs in riverbank soils were detected in the river water. About 31.05% ARGs were carried by Pseudomonas. Opportunistic pathogenic bacteria carrying resistance genes were mainly related to diarrhea and respiratory infections. Multidrug and beta-lactam resistance genes correlated positively with mobile genetic elements (MGEs), indicating a potential risk of diffusion.Conclusions: The composition of ARGs in three different rivers was similar, indicating that climate played an important role in ARG occurrence. ARG subtypes in river water were almost completely the same as those in riverbank soil. ARGs had no significant geographical distribution characteristics. Many ARGs were carried by human pathogenic bacteria related to human diarrhea and respiratory infections, such as Pseudomonas aeruginosa and Aeromonas caviae. In general, our results provide a valuable dataset of river water ARG distribution in northeast China. The related ecological geography distribution characteristics should be further explored.


2009 ◽  
Vol 76 (4) ◽  
pp. 1095-1102 ◽  
Author(s):  
Nelly Dubarry ◽  
Wenli Du ◽  
David Lane ◽  
Franck Pasta

ABSTRACT The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.


mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Taylor K. Dunivin ◽  
Jinlyung Choi ◽  
Adina Howe ◽  
Ashley Shade

ABSTRACT Plasmids harbor transferable genes that contribute to the functional repertoire of microbial communities, yet their contributions to metagenomes are often overlooked. Environmental plasmids have the potential to spread antibiotic resistance to clinical microbial strains. In soils, high microbiome diversity and high variability in plasmid characteristics present a challenge for studying plasmids. To improve the understanding of soil plasmids, we present RefSoil+, a database containing plasmid sequences from 922 soil microorganisms. Soil plasmids were larger than other described plasmids, which is a trait associated with plasmid mobility. There was a weak relationship between chromosome size and plasmid size and no relationship between chromosome size and plasmid number, suggesting that these genomic traits are independent in soil. We used RefSoil+ to inform the distributions of antibiotic resistance genes among soil microorganisms compared to those among nonsoil microorganisms. Soil-associated plasmids, but not chromosomes, had fewer antibiotic resistance genes than other microorganisms. These data suggest that soils may offer limited opportunity for plasmid-mediated transfer of described antibiotic resistance genes. RefSoil+ can serve as a reference for the diversity, composition, and host associations of plasmid-borne functional genes in soil, a utility that will be enhanced as the database expands. Our study improves the understanding of soil plasmids and provides a resource for assessing the dynamics of the genes that they carry, especially genes conferring antibiotic resistances. IMPORTANCE Soil-associated plasmids have the potential to transfer antibiotic resistance genes from environmental to clinical microbial strains, which is a public health concern. A specific resource is needed to aggregate the knowledge of soil plasmid characteristics so that the content, host associations, and dynamics of antibiotic resistance genes can be assessed and then tracked between the environment and the clinic. Here, we present RefSoil+, a database of soil-associated plasmids. RefSoil+ presents a contemporary snapshot of antibiotic resistance genes in soil that can serve as a reference as novel plasmids and transferred antibiotic resistances are discovered. Our study broadens our understanding of plasmids in soil and provides a community resource of important plasmid-associated genes, including antibiotic resistance genes.


2011 ◽  
Vol 2 ◽  
Author(s):  
Adam C. Martiny ◽  
Jennifer B. H. Martiny ◽  
Claudia Weihe ◽  
Andrew Field ◽  
Julie C. Ellis

2020 ◽  
Author(s):  
Maud Tournoud ◽  
Etienne Ruppé ◽  
Guillaume Perrin ◽  
Stéphane Schicklin ◽  
Ghislaine Guigon ◽  
...  

AbstractBackgroundShortening the time-to-result for pathogen detection and identification and antibiotic susceptibility testing for patients with Hospital-Acquired and Ventilator-Associated pneumonia (HAP-VAP) is of great interest. For this purpose, clinical metagenomics is a promising non-hypothesis driven alternative to traditional culture-based solutions: when mature, it would allow direct sequencing all microbial genomes present in a BronchoAlveolar Lavage (BAL) sample with the purpose of simultaneously identifying pathogens and Antibiotic Resistance Genes (ARG). In this study, we describe a new bioinformatics method to detect pathogens and their ARG with good accuracy, both in mono- and polymicrobial samples.MethodsThe standard approach (hereafter called TBo), that consists in taxonomic binning of metagenomic reads followed by an assembly step, suffers from lack of sensitivity for ARG detection. Thus, we propose a new bioinformatics approach (called TBwDM) with both models and databases optimized for HAP-VAP, that performs reads mapping against ARG reference database in parallel to taxonomic binning, and joint reads assembly.ResultsIn in-silico simulated monomicrobial samples, the recall for ARG detection increased from 51% with TBo to 97.3% with TBwDM; in simulated polymicrobial infections, it increased from 41.8% to 82%. In real sequenced BAL samples (mono and polymicrobial), detected pathogens were also confirmed by traditional culture approaches. Moreover, both recall and precision for ARG detection were higher with TBwDM than with TBo (35 points difference for recall, and 7 points difference for precision).ConclusionsWe present a new bioinformatics pipeline to identify pathogens and ARG in BAL samples from patients with HAP-VAP, with higher sensitivity for ARG recovery than standard approaches and the ability to link ARG to their host pathogens.


2019 ◽  
Author(s):  
Evelyn Loo ◽  
Amanda Zain ◽  
Gaik Chin Yap ◽  
Rikky W Purbojati ◽  
Daniela I Drautz-Moses ◽  
...  

Abstract Background: The rapid spread of multidrug- resistant pathogenic bacteria is a worldwide public health concern. Given the high carriage rate of extended spectrum beta-lactamase (ESBL)- producing Enterobacteriaceae in Asia, we aimed to evaluate community prevalence and dynamics by studying the longitudinal changes in antibiotic resistance gene (ARG) profiles and prevalence of ESBL-producing E coli and K. pneumoniae in the intestinal microbiome of infants participating in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) study, a longitudinal cohort study of pregnant women and their infants. Methods: We analysed the antibiotic resistance genes profile in the first year of life among 75 infants who had stool samples collected at multiple timepoints using metagenomics. Results: The mean number of ARGs per infant increased with age. The most common ARGs identified confer resistance to aminoglycoside, beta-lactam, macrolide and tetracycline antibiotics; all infants harboured these antibiotic resistance genes at some point in the first year of life. Few ARGs persisted throughout the first year of life. Beta-lactam resistant Escherichia coli and Klebsiella pneumoniae were detected in 4 (5.3%) and 32 (42.7%) of subjects respectively. Conclusion: In this longitudinal cohort study of healthy infants living in a region with high endemic antibacterial resistance, we demonstrate that majority of the infants harboured a number of antibiotic resistance genes in their gut and showed that the infant gut resistome is diverse and dynamic over the first year of life.


2018 ◽  
Author(s):  
George Taiaroa ◽  
Gregory M. Cook ◽  
Deborah A Williamson

SynopsisBackgroundNext-generation sequencing methods have broad application in addressing increasing antibiotic resistance, with identification of antibiotic resistance genes (ARGs) having direct clinical relevance.ObjectivesHere, we describe the appearance of synthetic vector-associated ARGs in major public next-generation sequence data sets and assemblies, including in environmental samples and high priority pathogenic microorganisms.MethodsA search of selected databases – the National Centre for Biotechnology Information (NCBI) nucleotide collection, NCBI whole genome shotgun sequence contigs and literature-associated European Nucleotide Archive (ENA) datasets, was carried out using sequences characteristic of pUC-family synthetic vectors as a query in BLASTn. Identified hits were confirmed as being of synthetic origin, and further explored through alignment and comparison to primary read sets.ResultsSynthetic vectors are attributed to a range of organisms in each of the NCBI databases searched, including examples belonging to each Kingdom of life. These synthetic vectors are associated with various ARGs, primarily those encoding resistance to beta-lactam antibiotics and aminoglycosides. Synthetic vector associated ARGs are also observed in multiple environmental meta-transcriptome datasets, as shown through analysis of associated ENA primary reads, and are proposed to have led to incorrect statements being made in the literature on the abundance of ARGs.ConclusionsAppearance of synthetic vector-associated ARGs can confound the study of antimicrobial resistance in varied settings, and may have clinical implications in the nearfuture.


Sign in / Sign up

Export Citation Format

Share Document