scholarly journals Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Beatriz Müller Nunes Souza ◽  
Juliana Guerra Pinto ◽  
André Henrique Correia Pereira ◽  
Alejandro Guillermo Miñán ◽  
Juliana Ferreira-Strixino

Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.

2012 ◽  
Author(s):  
João Alves dos Reis Júnior ◽  
Patrícia Nascimento de Assis ◽  
Garde^nia Matos Paraguassú ◽  
Isabele Cardoso Vieira de de Castro ◽  
Renan Ferreira Trindade ◽  
...  

2020 ◽  
Vol 8 (7) ◽  
pp. 1022
Author(s):  
Margarida M. Lopes ◽  
Maria Bartolomeu ◽  
Ana T. P. C. Gomes ◽  
Etelvina Figueira ◽  
Ricardo Pinto ◽  
...  

Pseudomonas syringae pv. actinidiae (Psa) is a phytopathogen responsible for bacterial canker in kiwifruit plants and can be disseminated through pollen. This study aimed to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) in the inactivation of Psa on kiwifruit pollen using New Methylene Blue (NMB) and Methylene Blue (MB) in the presence/absence of potassium iodide (KI). Pollen germination assays were also performed to evaluate if it was affected by aPDT. Higher reduction of Psa was achieved using NMB (5.0 μM) combined with KI (100 mM) in vitro (ca. 8 log CFU mL−1 after 90 min of irradiation), while NMB alone promoted a lower reduction (3.7 log CFU mL−1). The most efficient NMB concentration with KI was used to study the photodynamic efficiency of MB (5.0 μM). MB with KI photo-inactivated Psa more efficiently than NMB, causing the same bacterial reduction (ca. 8 log CFU mL−1) in half the irradiation time (45 min). Therefore, MB was selected for the subsequent ex vivo aPDT assays in pollen. Almost all the Psa cells added artificially to the pollen (3.2 log CFU mL−1) were photo-inactivated (3.1 log CFU mL−1), whereas aPDT had a low effect on pollen natural microorganisms. When KI was added, a significant increase in aPDT effectiveness was observed (4.5 log CFU mL−1). No negative effects were observed in the pollen germination after aPDT. The results show aPDT is an effective and safe method to Psa inactivation on kiwifruit pollen, and MB use is a promising alternative in the control of Psa transmission.


2015 ◽  
Vol 99 (9) ◽  
pp. 4031-4043 ◽  
Author(s):  
Mariusz Grinholc ◽  
Joanna Nakonieczna ◽  
Grzegorz Fila ◽  
Aleksandra Taraszkiewicz ◽  
Anna Kawiak ◽  
...  

Author(s):  
Susana C.P.S. de Oliveira ◽  
Juliana S.C. Monteiro ◽  
Gustavo M. Pires-Santos ◽  
Fernando José Pires Sampaio ◽  
Amanda P. Soares ◽  
...  

2008 ◽  
Vol 52 (7) ◽  
pp. 2538-2543 ◽  
Author(s):  
Francesc Marco ◽  
Cristina García de la Mària ◽  
Yolanda Armero ◽  
Eurídice Amat ◽  
Dolors Soy ◽  
...  

ABSTRACT Daptomycin is a lipopeptide antibiotic with potent in vitro activity against gram-positive cocci, including Staphylococcus aureus. This study evaluated the in vitro and in vivo efficacies of daptomycin against two clinical isolates: methicillin-resistant S. aureus (MRSA) 277 (vancomycin MIC, 2 μg/ml) and glycopeptide-intermediate S. aureus (GISA) ATCC 700788 (vancomycin MIC, 8 μg/ml). Time-kill experiments demonstrated that daptomycin was bactericidal in vitro against these two strains. The in vivo activity of daptomycin (6 mg/kg of body weight every 24 h) was evaluated by using a rabbit model of infective endocarditis and was compared with the activities of a high-dose (HD) vancomycin regimen (1 g intravenously every 6 h), the recommended dose (RD) of vancomycin regimen (1 g intravenously every 12 h) for 48 h, and no treatment (as a control). Daptomycin was significantly more effective than the vancomycin RD in reducing the density of bacteria in the vegetations for the MRSA strains (0 [interquartile range, 0 to 1.5] versus 2 [interquartile range, 0 to 5.6] log CFU/g vegetation; P = 0.02) and GISA strains (2 [interquartile range, 0 to 2] versus 6.6 [interquartile range, 2.0 to 6.9] log CFU/g vegetation; P < 0.01) studied. In addition, daptomycin sterilized more MRSA vegetations than the vancomycin RD (13/18 [72%] versus 7/20 [35%]; P = 0.02) and sterilized more GISA vegetations than either vancomycin regimen (12/19 [63%] versus 4/20 [20%]; P < 0.01). No statistically significant difference between the vancomycin HD and the vancomycin RD for MRSA treatment was noted. These results support the use of daptomycin for the treatment of aortic valve endocarditis caused by GISA and MRSA.


Author(s):  
Marcelo H. Tonin ◽  
Fabiano C. Brites ◽  
José R. Mariano ◽  
Karina M. S. Freitas ◽  
Mariana A. L. Ortiz ◽  
...  

Abstract Objective Currently, dental implants are a predictable treatment option for oral rehabilitation; however, complications such as peri-implant diseases are increasing every day. Thus, the aim of this study was to verify the efficacy, in vitro, of two protocols against cultures of periodontal biofilm and Staphylococcus aureus. Material and Methods Petri dishes for each of the following groups were used: control groups (C)—plates inoculated with periodontal biofilm (C.B; n = 4) or S. aureus (C.SA; n = 4) without any treatment; laser groups—plates inoculated with periodontal biofilm (low-level laser therapy [LLLT].B; n = 4) or S. aureus (LLLT.SA; n = 4) and treated with LLLT (660 nm, 30 mW, 50 J/cm2, and 47 seconds); antimicrobial photodynamic therapy groups (aPDT)—plates inoculated with periodontal biofilm (aPDT.B; n = 4) or S. aureus (aPDT.SA; n = 4) and treated with aPDT (red laser 660 nm, 30 mW, 50 J/cm2, 47 seconds + toluidine blue O (TBO) 100 µg/mL, and 1 minute). After treatments were performed, the contents of all plates were diluted and seeded for counting colony-forming units (CFUs). Statistical Analysis Results were analyzed with one-way analysis of variance (ANOVA), Tukey’s test, comparison of percentages, and independent t-tests with a 5% significance level. Results Both treatments, LLLT and aPDT, significantly reduced the number of CFUs for the two types of culture, LLLT.B (3.69 × 106 ± 0.20), aPDT.B (2.79 × 106 ± 0.13), LLLT.SA (4.10 × 106 ± 0.12), and aPDT.SA (3.23 × 106 ± 0.10) when compared with control groups C.B (5.18 × 106 ± 0.43) and C.SA (5.81 × 106 ± 0.16; p = 0.000). When treatment groups were compared separately, there was also a statistically significant difference (p = 0.000). None of the protocols were able to eliminate cultured microorganisms. Conclusion The LLLT and aPDT protocols effectively reduced cultures of periodontal biofilm and S. aureus in vitro, with the superiority of aPDT.


2021 ◽  
Vol 14 (7) ◽  
pp. 603
Author(s):  
Vanesa Pérez-Laguna ◽  
Isabel García-Luque ◽  
Sofía Ballesta ◽  
Antonio Rezusta ◽  
Yolanda Gilaberte

The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.


Sign in / Sign up

Export Citation Format

Share Document