scholarly journals Antimicrobial Synergy Testing: Comparing the Tobramycin and Ceftazidime Gradient Diffusion Methodology Used in Assessing Synergy in Cystic Fibrosis-Derived Multidrug-Resistant Pseudomonas aeruginosa

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 967
Author(s):  
Ijeoma N. Okoliegbe ◽  
Karolin Hijazi ◽  
Kim Cooper ◽  
Corinne Ironside ◽  
Ian M. Gould

The need for synergy testing is driven by the necessity to extend the antimicrobial spectrum, reducing drug dosage/toxicity and the development of resistance. Despite the abundance of synergy testing methods, there is the absence of a gold standard and a lack of synergy correlation among methods. The most popular method (checkerboard) is labor-intensive and is not practical for clinical use. Most clinical laboratories use several gradient synergy methods which are quicker/easier to use. This study sought to evaluate three gradient synergy methods (direct overlay, cross, MIC:MIC ratio) with the checkerboard, and compare two interpretative criteria (the fractional inhibitory concentration index (FICI) and susceptibility breakpoint index (SBPI)) regarding these methods. We tested 70 multidrug-resistant Pseudomonas aeruginosa, using a tobramycin and ceftazidime combination. The agreement between the checkerboard and gradient methods was 60 to 77% for FICI, while agreements for SBPI that ranged between 67 and 82.86% were statistically significant (p ≤ 0.001). High kappa agreements were observed using SBPI (Ƙ > 0.356) compared to FICI (Ƙ < 0.291) criteria, and the MIC:MIC method demonstrated the highest, albeit moderate, intraclass correlation coefficient (ICC = 0.542) estimate. Isolate resistance profiles suggest method-dependent synergism for isolates, with ceftazidime susceptibility after increased exposure. The results show that when interpretative criteria are considered, gradient diffusion (especially MIC:MIC) is a valuable and practical method that can inform the treatment of cystic fibrosis patients who are chronically infected with P. aeruginosa.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, &gt;0.5 to &lt;1, &gt;1 to &lt;4, and &gt;4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 &gt;32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 9 (3) ◽  
pp. 478
Author(s):  
Ersilia Vita Fiscarelli ◽  
Martina Rossitto ◽  
Paola Rosati ◽  
Nour Essa ◽  
Valentina Crocetta ◽  
...  

As disease worsens in patients with cystic fibrosis (CF), Pseudomonas aeruginosa (PA) colonizes the lungs, causing pulmonary failure and mortality. Progressively, PA forms typical biofilms, and antibiotic treatments determine multidrug-resistant (MDR) PA strains. To advance new therapies against MDR PA, research has reappraised bacteriophages (phages), viruses naturally infecting bacteria. Because few in vitro studies have tested phages on CF PA biofilms, general reliability remains unclear. This study aimed to test in vitro newly isolated environmental phage activity against PA isolates from patients with CF at Bambino Gesù Children’s Hospital (OBG), Rome, Italy. After testing in vitro phage activities, we combined phages with amikacin, meropenem, and tobramycin against CF PA pre-formed biofilms. We also investigated new emerging morphotypes and bacterial regrowth. We obtained 22 newly isolated phages from various environments, including OBG. In about 94% of 32 CF PA isolates tested, these phages showed in vitro PA lysis. Despite poor efficacy against chronic CF PA, five selected-lytic-phages (Φ4_ZP1, Φ9_ZP2, Φ14_OBG, Φ17_OBG, and Φ19_OBG) showed wide host activity. The Φ4_ZP1-meropenem and Φ14_OBG-tobramycin combinations significantly reduced CF PA biofilms (p < 0.001). To advance potential combined phage-antibiotic therapy, we envisage further in vitro test combinations with newly isolated phages, including those from hospital environments, against CF PA biofilms from early and chronic infections.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S731-S731
Author(s):  
Laura J Rojas ◽  
Mohamad Yasmin ◽  
Jacquelynn Benjamino ◽  
Steven Marshall ◽  
Kailynn DeRonde ◽  
...  

Abstract Background Pseudomonas aeruginosa is a persistent and difficult-to-treat pathogen in many patients, especially those with cystic fibrosis (CF). Herein, we describe our experience managing a young woman suffering from CF with XDR P. aeruginosa who underwent lung transplantation. We highlight the contemporary difficulties reconciling the clinical, microbiological, and genetic information. Methods Mechanism-based-susceptibility disk diffusion synergy testing with double and triple antibiotic combinations aided in choosing tailored antimicrobial combinations to control the infection in the pre-transplant period, create an effective perioperative prophylaxis regimen, and manage recurrent infections in the post-transplant period. Thirty-six sequential XDR and PDR P. aeruginosa isolates obtained from the patient within a 17-month period, before and after a double-lung transplant were analyzed by whole genome sequencing (WGS) and RNAseq in order to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence changes over time Results Our phylogenetic reconstruction demonstrates that these isolates represent a genotypically and phenotypically heterogeneous population. The pattern of mutation accumulation and variation of gene expression suggests that a group of closely related strains was present in the patient prior to transplantation and continued to evolve throughout the course of treatment regardless of antibiotic usage.Our findings challenge antimicrobial stewardship programs that assist with the selection and duration of antibiotic regimens in critically ill and immunocompromised patients based on single-isolate laboratory-derived resistant profiles. We propose that an approach sampling the population of pathogens present in a clinical sample instead of single colonies be applied instead when dealing with XDR P. aeruginosa, especially in patients with CF. Conclusion In complex cases such as this, real-time combination testing and genomic/transcriptomic data could lead to the application of true “precision medicine” by helping clinicians choose the combination antimicrobial therapy most likely to be successful against a population of MDR pathogens present. Disclosures Federico Perez, MD, MS, Accelerate (Research Grant or Support)Merck (Research Grant or Support)Pfizer (Research Grant or Support) Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


2011 ◽  
Vol 32 (4) ◽  
pp. 400-402 ◽  
Author(s):  
E. Chandler Church ◽  
Patrick D. Mauldin ◽  
John A. Bosso

Pseudomonas aeruginosa is a nosocomial pathogen capable of exhibiting a variety of resistance mechanisms against multiple classes of antibiotics. Fluoroquinolones, commonly used to treat a variety of infections in both ambulatory and hospitalized patients, have been increasingly linked to the development of resistance, both to fluoroquinolones and to other classes of antibiotics including β-lactams, cephalosporins, and carbapenems. In turn, as many as 95% of multidrug-resistant pseudomonal isolates may be resistant to fluoroquinolones. Although research has examined the effect of fluoroquinolone use on P. aeruginosa resistance, to our knowledge, no work has been published describing possible differences among individual fluoroquinolones related to resistance to other antibiotic classes. The purpose of this analysis was to assess the possible effects of varying usage of levofloxacin, gatifloxacin, and moxifloxacin on P. aeruginosa susceptibility to piperacillin-tazobactam, cefepime, and tobramycin. Data from January 2000 through December 2008 were obtained from clinical microbiology and pharmacy databases of the Medical University of South Carolina Medical Center, which is a 689-bed academic medical center and level 1 trauma center with adult and pediatric beds. This study was approved by the institution's institutional review board.


Author(s):  
Dustin O'Neall ◽  
Emese Juhász ◽  
Ákos Tóth ◽  
Edit Urbán ◽  
Judit Szabó ◽  
...  

Abstract Our objective was to compare the activity ceftazidime-avibactam (C/A) and ceftolozane–tazobactam (C/T) against multidrug (including carbapenem) resistant Pseudomonas aeruginosa clinical isolates collected from six diagnostic centers in Hungary and to reveal the genetic background of their carbapenem resistance. Two hundred and fifty consecutive, non-duplicate, carbapenem-resistant multidrug resistant (MDR) P. aeruginosa isolates were collected in 2017. Minimal inhibitory concentration values of ceftazidime, cefepime, piperacillin/tazobactam, C/A and C/T were determined by broth microdilution method and gradient diffusion test. Carbapenem inactivation method (CIM) test was performed on all isolates. Carbapenemase-encoding blaVIM, blaIMP, blaKPC, blaOXA-48-like and blaNDM genes were identified by multiplex PCR. Of the isolates tested, 33.6& and 32.4& showed resistance to C/A and C/T, respectively. According to the CIM test results, 26& of the isolates were classified as carbapenemase producers. The susceptibility of P. aeruginosa isolates to C/A and C/T without carbapenemase production was 89& and 91&, respectively. Of the CIM-positive isolates, 80& were positive for blaVIM and 11& for blaNDM. The prevalence of Verona integron-encoded metallo-beta-lactamase (VIM)-type carbapenemase was 20.8&. NDM was present in 2.8& of the isolates. Although the rate of carbapenemase-producing P. aeruginosa strains is high, a negative CIM result indicates that either C/A or C/T could be effective even if carbapenem resistance has been observed.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S325-S325
Author(s):  
Elias M Mullane ◽  
Lindsay M Avery ◽  
David P Nicolau

Abstract Background Pseudomonas aeruginosa (PSA) is an opportunistic pathogen known to cause complications in critically ill patients worldwide. In those at risk of infection with multidrug-resistant strains (MDR-PSA), dual antibiotic therapy is often considered. However, this practice may contribute to rising resistance rates and poor outcomes if empirical selection is suboptimal. WCK 5222 (cefepime/zidebactam), a novel β-lactam/β-lactam enhancer, may offer a solution. Methods Minimum inhibitory concentrations (MICs) were determined for WCK 5222, amikacin (AMK), fosfomycin (FOF), cefepime (FEP), ceftolozane/tazobactam (C/T), and meropenem (MEM) against 18 clinical PSA isolates using gradient diffusion strip (GDS) methods. Activities of FEP, C/T, and MEM in combination with AMK and FOF were assessed using GDS for isolates nonsusceptible to the β-lactam (MICs >8 mg/L, >4/4 mg/L, and >2 mg/L, respectively). Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Instances of restored β-lactam susceptibility when tested in combination were compared with the proportion of WCK 5222 MICs ≤ 8 mg/L. Results WCK 5222 MICs ranged from 2 to 32 mg/L (MIC50, 8 mg/L). Rates of susceptibility were: AMK (67%), FOF (44%, MIC ≤ 64 mg/L), FEP (6%), C/T (33%), MEM (0%). Combinations with C/T most frequently demonstrated synergy (C/T-FOF, 42%; C/T-AMK, 33%) and restored C/T susceptibility was observed in 42% of assessments with FOF and in 50% with AMK. For FEP combinations, synergy was observed in 29% and 18% of assessments with FOF and AMK, respectively, with restored susceptibility in 6% for both combinations. Synergy occurred in 11% and 6% of assessments of MEM with FOF and AMK, respectively, with zero instances of restored susceptibility. In total, β-lactam susceptibility was restored in 14% (13/94) of combinations compared with 78% (14/18) of WCK 5222 MICs ≤ 8 mg/L. Conclusion In a selection of MDR-PSA isolates that included carbapenem- and C/T-resistant strains, WCK 5222 MICs ≤ 8 mg/L (cefepime susceptible) were observed more frequently than restoration of susceptibility in select β-lactams in combination with FOF or AMK. WCK 5222 monotherapy may offer enhanced coverage of MDR-PSA over empirically selected combination therapies. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document