scholarly journals Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence

Antibiotics ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 163-181 ◽  
Author(s):  
Dinesh Fernando ◽  
Ayush Kumar
2018 ◽  
Vol 169 (7-8) ◽  
pp. 351-356 ◽  
Author(s):  
Helen I. Zgurskaya ◽  
Valentin V. Rybenkov ◽  
Ganesh Krishnamoorthy ◽  
Inga V. Leus

2014 ◽  
Vol 9 (10) ◽  
pp. 1165-1177 ◽  
Author(s):  
Jessica MA Blair ◽  
Grace E Richmond ◽  
Laura JV Piddock

2008 ◽  
Vol 52 (9) ◽  
pp. 3202-3209 ◽  
Author(s):  
George P. Tegos ◽  
Kayo Masago ◽  
Fatima Aziz ◽  
Andrew Higginbotham ◽  
Frank R. Stermitz ◽  
...  

ABSTRACT Antimicrobial photodynamic inactivation (APDI) combines a nontoxic photoactivatable dye or photosensitizer (PS) with harmless visible light to generate singlet oxygen and reactive oxygen species that kill microbial cells. Cationic phenothiazinium dyes, such as toluidine blue O (TBO), are the only PS used clinically for APDI, and we recently reported that this class of PS are substrates of multidrug efflux pumps in both gram-positive and gram-negative bacteria. We now report that APDI can be significantly potentiated by combining the PS with an efflux pump inhibitor (EPI). Killing of Staphylococcus aureus mediated by TBO and red light is greatly increased by coincubation with known inhibitors of the major facilitator pump (NorA): the diphenyl urea INF271, reserpine, 5′-methoxyhydnocarpin, and the polyacylated neohesperidoside, ADH7. The potentiation effect is greatest in the case of S. aureus mutants that overexpress NorA and least in NorA null cells. Addition of the EPI before TBO has a bigger effect than addition of the EPI after TBO. Cellular uptake of TBO is increased by EPI. EPI increased photodynamic inactivation killing mediated by other phenothiazinium dyes, such as methylene blue and dimethylmethylene blue, but not that mediated by nonphenothiazinium PS, such as Rose Bengal and benzoporphyrin derivative. Killing of Pseudomonas aeruginosa mediated by TBO and light was also potentiated by the resistance nodulation division pump (MexAB-OprM) inhibitor phenylalanine-arginine beta-naphthylamide but to a lesser extent than for S. aureus. These data suggest that EPI could be used in combination with phenothiazinium salts and light to enhance their antimicrobial effect against localized infections.


2001 ◽  
Vol 183 (13) ◽  
pp. 3967-3973 ◽  
Author(s):  
Antonia Rojas ◽  
Estrella Duque ◽  
Gilberto Mosqueda ◽  
Geir Golden ◽  
Ana Hurtado ◽  
...  

ABSTRACT In Pseudomonas putida DOT-T1E multidrug efflux pumps of the resistance-nodulation-division family make a major contribution to solvent resistance. Two pumps have been identified: TtgABC, expressed constitutively, and TtgDEF, induced by aromatic hydrocarbons. A double mutant lacking both efflux pumps was able to survive a sudden toluene shock if and only if preinduced with small amounts of toluene supplied via the gas phase. In this article we report the identification and characterization in this strain of a third efflux pump, named TtgGHI. The ttgGHI genes form an operon that is expressed constitutively at high levels from a single promoter. In the presence of toluene the operon is expressed at an even higher level from two promoters, the constitutive one and a previously unreported one that is inducible and that partially overlaps the constitutive promoter. By site-directed mutagenesis we constructed a single ttgHmutant which was shown to be unable to survive sudden 0.3% (vol/vol) toluene shocks regardless of the preculture conditions. The mutation was transferred to single and double mutants to construct mutant strains in which two or all three pumps are knocked out. Survival analysis of induced and noninduced cells revealed that the TtgABC and TtgGHI pumps extruded toluene, styrene, m-xylene, ethylbenzene, and propylbenzene, whereas the TtgDEF pump removed only toluene and styrene. The triple mutant was hypersensitive to toluene, as shown by its inability to grow with toluene supplied via the vapor phase.


Author(s):  
Christian Bonifer ◽  
Clemens Glaubitz

ATP-binding cassette (ABC) transporters play an important role in various cellular processes. They display a similar architecture and share a mechanism which couples ATP hydrolysis to substrate transport. However, in the light of current data and recent experimental progress, this protein superfamily appears as multifaceted as their broad substrate range. Among the prokaryotic ABC transporters, MsbA can serve as a paradigm for research in this field. It is located in the inner membrane of Gram-negative bacteria and functions as a floppase for the lipopolysaccharide (LPS) precursor core-LPS, which is involved in the biogenesis of the bacterial outer membrane. While MsbA shows high similarity to eukaryotic ABC transporters, its expression in Gram-negative bacteria makes it conveniently accessible for many experimental approaches from spectroscopy to 3D structure determination. As an essential protein for bacterial membrane integrity, MsbA has also become an attractive target for the development of novel antibiotics. Furthermore, it serves as a model for multidrug efflux pumps. Here we provide an overview of recent findings and their relevance to the field, highlight the potential of methods such as solid-state NMR and EPR spectroscopy and provide a perspective for future work.


Sign in / Sign up

Export Citation Format

Share Document