scholarly journals Siegesbeckiae Herba Extract and Chlorogenic Acid Ameliorate the Death of HaCaT Keratinocytes Exposed to Airborne Particulate Matter by Mitigating Oxidative Stress

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1762
Author(s):  
Jae Won Ha ◽  
Yong Chool Boo

Airborne particulate matter with a size of 10 μm or less (PM10) can cause oxidative damages and inflammatory reactions in the skin. This study was conducted to discover natural products that are potentially useful in protecting the skin from PM10. Among the hot water extracts of a total of 23 medicinal plants, Siegesbeckiae Herba extract (SHE), which showed the strongest protective effect against PM10 cytotoxicity, was selected, and its mechanism of action and active constituents were explored. SHE ameliorated PM10-induced cell death, lactate dehydrogenase (LDH) release, lipid peroxidation, and reactive oxygen species (ROS) production in HaCaT cells. SHE decreased the expression of KEAP1, a negative regulator of NRF2, and increased the expression of NRF2 target genes, such as HMOX1 and NQO1. SHE selectively induced the enzymes involved in the synthesis of GSH (GCL-c and GCL-m), the regeneration of GSH (GSR and G6PDH), and GSH conjugation of xenobiotics (GSTκ1), rather than the enzymes that directly scavenge ROS (SOD1, CAT, and GPX1). SHE increased the cellular content of GSH and mitigated the oxidation of GSH to GSSG caused by PM10 exposure. Of the solvent fractions of SHE, the n-butyl alcohol (BA) fraction ameliorated cell death in both the absence and presence of PM10. The BA fraction contained a high amount of chlorogenic acid. Chlorogenic acid reduced PM10-induced cell death, LDH release, and ROS production. This study suggests that SHE protects cells from PM10 toxicity by increasing the cellular antioxidant capacity and that chlorogenic acid may be an active phytochemical of SHE.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 848
Author(s):  
Benjamin Eid ◽  
David Beggs ◽  
Peter Mansell

In 2019–2020, a particularly bad bushfire season in Australia resulted in cattle being exposed to prolonged periods of smoke haze and reduced air quality. Bushfire smoke contains many harmful pollutants, and impacts on regions far from the fire front, with smoke haze persisting for weeks. Particulate matter (PM) is one of the major components of bushfire smoke known to have a negative impact on human health. However, little has been reported about the potential effects that bushfire smoke has on cattle exposed to smoke haze for extended periods. We explored the current literature to investigate evidence for likely effects on cattle from prolonged exposure to smoke generated from bushfires in Australia. We conducted a search for papers related to the impacts of smoke on cattle. Initial searching returned no relevant articles through either CAB Direct or PubMed databases, whilst Google Scholar provided a small number of results. The search was then expanded to look at two sub-questions: the type of pollution that is found in bushfire smoke, and the reported effects of both humans and cattle being exposed to these types of pollutants. The primary mechanism for damage due to bushfire smoke is due to small airborne particulate matter (PM). Although evidence demonstrates that PM from bushfire smoke has a measurable impact on both human mortality and cardiorespiratory morbidities, there is little evidence regarding the impact of chronic bushfire smoke exposure in cattle. We hypothesize that cattle are not severely affected by chronic exposure to smoke haze, as evidenced by the lack of reports. This may be because cattle do not tend to suffer from the co-morbidities that, in the human population, seem to be made worse by smoke and pollution. Further, small changes to background mortality rates or transient morbidity may also go unreported.


Sign in / Sign up

Export Citation Format

Share Document