scholarly journals Rumex japonicus Houtt. Protects Dopaminergic Neurons by Regulating Mitochondrial Function and Gut–Brain Axis in In Vitro and In Vivo Models of Parkinson’s Disease

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Hee-Young Kim ◽  
Chang-Hwan Bae ◽  
Jayoung Kim ◽  
Yukyoung Lee ◽  
Hyongjun Jeon ◽  
...  

Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. Rumex japonicus Houtt. (RJ) has been used to treat gastrointestinal and inflammatory diseases in East Asia. However, it is unknown whether RJ can prevent PD. We investigated the neuroprotective effects of RJ in cellular and animal PD models, focused on mitochondrial function and the gut–brain axis. SH-SY5Y cells were treated with RJ (0.01 mg/mL) for 24 h, after which they were treated with the 1-methyl-4-phenylpyridinium ion (MPP+). MPP+-induced apoptosis increased mitochondrial reactive oxygen species and decreased ATP, PINK1, and DJ-1, which were inhibited by RJ. Ten-week-old C57BL/6N male mice were treated with 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 5 days and orally administered 50 or 100 mg/kg of RJ for 14 days. RJ alleviated MPTP-induced behavioral impairment, dopaminergic neuronal death, and mitochondrial dysfunction in the substantia nigra (SN) and suppressed the MPTP-induced increase in lipopolysaccharide, interleukin-1β, tumor necrosis factor-α, α-synuclein, and apoptotic factors in the SN and colon. Moreover, RJ inhibited the MPTP-mediated disruption of the tight junction barrier in the colon and blood–brain barrier of mice. Therefore, RJ alleviates MPTP-induced inflammation and dopaminergic neuronal death by maintaining mitochondrial function and tight junctions in the brain and colon.

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7643
Author(s):  
Sonia Burgaz ◽  
Concepción García ◽  
Claudia Gonzalo-Consuegra ◽  
Marta Gómez-Almería ◽  
Francisco Ruiz-Pino ◽  
...  

Cannabinoids act as pleiotropic compounds exerting, among others, a broad-spectrum of neuroprotective effects. These effects have been investigated in the last years in different preclinical models of neurodegeneration, with the cannabinoid type-1 (CB1) and type-2 (CB2) receptors concentrating an important part of this research. However, the issue has also been extended to additional targets that are also active for cannabinoids, such as the orphan G-protein receptor 55 (GPR55). In the present study, we investigated the neuroprotective potential of VCE-006.1, a chromenopyrazole derivative with biased orthosteric and positive allosteric modulator activity at GPR55, in murine models of two neurodegenerative diseases. First, we proved that VCE-006.1 alone could induce ERK1/2 activation and calcium mobilization, as well as increase cAMP response but only in the presence of lysophosphatidyl inositol. Next, we investigated this compound administered chronically in two neurotoxin-based models of Parkinson’s disease (PD), as well as in some cell-based models. VCE-006.1 was active in reversing the motor defects caused by 6-hydroxydopamine (6-OHDA) in the pole and the cylinder rearing tests, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity detected in the substantia nigra. Similar cytoprotective effects were found in vitro in SH-SY5Y cells exposed to 6-OHDA. We also investigated VCE-006.1 in LPS-lesioned mice with similar beneficial effects, except against glial reactivity and associated inflammatory events, which remained unaltered, a fact confirmed in BV2 cells treated with LPS and VCE-006.1. We also analyzed GPR55 in these in vivo models with no changes in its gene expression, although GPR55 was down-regulated in BV2 cells treated with LPS, which may explain the lack of efficacy of VCE-006.1 in such an assay. Furthermore, we investigated VCE-006.1 in two genetic models of amyotrophic lateral sclerosis (ALS), mutant SOD1, or TDP-43 transgenic mice. Neither the neurological decline nor the deteriorated rotarod performance were prevented with this compound, and the same happened with the elevated microglial and astroglial reactivities, albeit modest spinal motor neuron preservation was achieved in both models. We also analyzed GPR55 in these in vivo models and found no changes in both TDP-43 transgenic and mSOD1 mice. Therefore, our findings support the view that targeting the GPR55 may afford neuroprotection in experimental PD, but not in ALS, thus stressing the specificities for the development of cannabinoid-based therapies in the different neurodegenerative disorders.


2020 ◽  
Author(s):  
dewei he ◽  
dianfeng liu ◽  
ang zhou ◽  
xiyu gao ◽  
yufei zhang ◽  
...  

Abstract Background Parkinson's disease (PD), the second largest neurodegenerative disease seriously affects human health. Microglia, the main immune cells in the brain participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidences suggest that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. Therefore, we aim to explore the effect of CPT on microglia polarization and its underlying mechanism on neuroinflammation. Methods C57BL/6 mice (25–30 g) were injected LPS or PBS into the substantia nigra (SN). Open-Field Test and Immunohistochemistry were performed to test the dyskinesia of mice and the loss of neurons in the substantia nigra (SN). Microglia cell line BV-2, the neuroblastoma SH-SY5Y and dopaminergic neuron MN9D cell were cultured. Cytotoxicity assay, reverse transcription quantitative real-time polymerase chain reaction (RT-PCR), Western blot, ELISA and Immunofluorescence staining were performed. All results were presented with mean ± SD. Results In vivo, CPT improved dyskinesia of mice, reduced the loss of neurons in the substantia nigra (SN) and inhibited neuro-inflammatory responses in LPS-injected mice. In vitro, CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1-NF-κB signal axis. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from neurotoxicity of mediated by microglia activation. Conclusion CPT regulates the microglia polarization phenotype via the AKT/Nrf2/HO-1-NF-κB signal axis, inhibits neuro-inflammatory responses and exerts neuroprotective effects in vivo and in vitro.


2021 ◽  
Vol 11 (12) ◽  
pp. 1573
Author(s):  
Samay Prakash ◽  
Wayne G. Carter

Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson’s disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.


Author(s):  
Michele Goulart dos Santos ◽  
Lucia Emanueli Schimith ◽  
Corinne André-Miral ◽  
Ana Luiza Muccillo-Baisch ◽  
Bruno Dutra Arbo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document