scholarly journals Towards Mode-Multiplexed Fiber Sensors: An Investigation on the Spectral Response of Etched Graded Index OM4 Multi-Mode Fiber with Bragg grating for Refractive Index and Temperature Measurement

2020 ◽  
Vol 10 (1) ◽  
pp. 337 ◽  
Author(s):  
Kort Bremer ◽  
Lourdes Shanika Malindi Alwis ◽  
Yulong Zheng ◽  
Bernhard Wilhelm Roth

An investigation on the feasibility of utilizing Mode Division Multiplexing (MDM) for simultaneous measurement of Surrounding Refractive Index (SRI) and temperature using a single sensor element based on an etched OM4 Graded Index Multi Mode Fiber (GI-MMF) with an integrated fiber Bragg Grating (BG), is presented. The proposed work is focused on the concept of principle mode groups (PMGs) generated by the OM4 GI-MMF whose response to SRI and temperature would be different and thus discrimination of the said two parameters can be achieved simultaneously via a single sensor element. Results indicate that the response of all PMGs to temperature to be equal, i.e., 11.4 pm/°C, while the response to SRI depends on each PMG. Thus, it is evident that temperature “de-coupled” SRI measurement can be achieved by deducing the temperature effects experienced by the sensor element. Sensitivity of the PMGs to applied SRI varied from 3.04 nm/RIU to of 0.22 nm/RIU from the highest to lowest PMG, respectively. The results verify that it is feasible to obtain dual measurement of SRI and temperature simultaneously using the same, i.e., single, sensing element.

2011 ◽  
Author(s):  
Bin-bin Luo ◽  
Ming-fu Zhao ◽  
Xiao-jun Zhou ◽  
De-yi Huang ◽  
Shao-fei Wang ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 260-263 ◽  
Author(s):  
Muhammad Bin Jalil

This study presents the modelling, simulation, and characterization of the Fiber Bragg grating (FBG) on maximum reflectivity, bandwidth, the effect of applied strain to the wavelength shift, ʎB and sensitivity of the wavelength shift with strain for optical sensing system. In this study, a commercial FBG with the center wavelength of 1550nm is used in order to measure the spectral response of FBG to strain. The parameters used in these simulations are the fiber grating length, L ranging from 1 to 10mm, the changes in refractive index, ∆n from 0.0002 to 0.0020, the effective refractive index, is 1.46 and the grating period of FBG,Λ for 530nm in the performance of FBG. The bandwidth and spectrum reflectivity are analyzed from the variation of refractive index and grating length. Simulations on the FBG are carried out using OriginPro 2016 and Microsoft Excel 2010 software. The Excel sheet is used to generate data and the OriginPro 2016 is used to generate the graphs. The results obtained indicates the variation in grating length and refractive index affect the spectral reflectivity and the bandwidth. In addition, results obtained show that the changes in the Bragg wavelength are due to an increase in length of the grating region which due to the applied strain.


2011 ◽  
Vol 84-85 ◽  
pp. 582-585 ◽  
Author(s):  
Ming Fu Zhao ◽  
De Yi Huang ◽  
Bin Zhou ◽  
Lei Zi Jiao

In this paper, measurement method for the refractive index of chemical substances based on fiber Bragg grating (FBG) sensor was proposed. The relation between Bragg wavelength shift and surrounding refractive index (SRI) was analyzed theoretically and experimentally. The SRI sensitivity of the chemical sensor could be enhanced by reducing the cladding thickness of the FBG using hydrofluoric acid (HF) solution etching process. The experimental results indicated that the variation of Bragg wavelength increased as the SRI increased. In the low SRI region, the relationship between the Bragg wavelength shift and the change of the SRI was approximately linear.


2020 ◽  
Vol 1484 ◽  
pp. 012009
Author(s):  
Nurul Shuhada Tan Halid ◽  
Suzairi Daud ◽  
Siti Nur Aizatti Rohizad ◽  
Esmafatinsyafiqa Multar ◽  
Abdull Rahim Mohd Yusoff

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5211 ◽  
Author(s):  
Binbin Yan ◽  
Lei Sun ◽  
Yanhua Luo ◽  
Liwei Yang ◽  
Haifeng Qi ◽  
...  

In this paper, a temperature self-compensated refractive index sensor based on fiber Bragg grating (FBG) and the ellipsoid structure is demonstrated. The ellipsoid can excite the cladding modes and recouple them into the fiber core. Two well-defined wavelength bands are observed in the reflection spectrum of the proposed sensor, i.e., the Bragg resonant peak and the cladding resonant peaks. By measuring the wavelength shift of the cladding resonant peak, the surrounding refractive index (SRI) can be determined, and the wavelength shift of the Bragg resonant peak can be used as a reliable reference to self-compensate the temperature variation (temperature sensitivity of 10.76 pm/°C). When the SRI changes from 1.3352 to 1.3722, the cladding resonant peak redshifts linearly with an average sensitivity of 352.6 pm/RIU (refractive index unit). When the SRI changes from 1.3722 to 1.4426, an exponential redshift is observed with a maximum sensitivity of 4182.2 pm/RIU. Especially, the sensing performance is not very reliant on the distance between the FBG and the ellipsoid, greatly improving the ease of the fabrication.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Mohd Hazimin Mohd Salleh ◽  
Mohd Haziq M.S ◽  
Muhammad Salihi Abd Hadi

In this work, we demonstrate the potential of Bragg grating polymer waveguide as an optical biosensor. Visible wavelength region at 650 nm is used as a centre wavelength because it is commonly used in biological and chemical sensing for both label and label-free sensing.  The Bragg polymer waveguide structure is simulated using RSoft optical design and analysis software. The results show that there is a transmission drop with a 3 dB bandwidth of 661.0 nm when the surrounding refractive index is 1.33. The specific wavelength (transmission drop) is shifted to 724.2 nm when we increased the surrounding medium into 1.43 to mimic the bioanalytes solution. Simulation result shows that the wavelength shift was approximately 63.2 nm for every 0.1 increasing of surrounding refractive index. The Bragg grating polymer waveguide was fabricated by using electron beam lithography. Then, the fabricated devices were easily integrated within microfluidic systems in order to validate the wavelength shift. From the experiments, the wavelength shift occurred approximately 20.3 nm over 0.1 increment of refractive index. The discrepancies were likely due to the accumulation of sucrose solution on top and sidewall of the sensing area, the insertion loss between input and output coupling of the waveguide interface that induced the noise to signal ratio. Where we know that, is impossible to happen in simulation. Thus both simulation and experimental results strongly indicate that Bragg grating polymer waveguide structure at visible wavelength region have a potential for label or label-free optical biosensing applications.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 897 ◽  
Author(s):  
Daniel Carney ◽  
Halldor Svavarsson ◽  
Hafez Hemmati ◽  
Alexander Fannin ◽  
Jae Yoon ◽  
...  

Fabrication and sensor application of a simple plasmonic structure is described in this paper. The sensor element consists of nano-patterned gold film brought about from two-dimensional periodic photoresist templates created by holographic laser interference lithography. Reflectance spectroscopy revealed that the sensor exhibits significant refractive index sensitivity. A linear relationship between shifts in plasmonic resonances and changes in the refractive index were demonstrated. The sensor has a bulk sensitivity (SB) of 880 nm/refractive index unit and work under normal incidence conditions. This sensitivity exceeded that of many common types of plasmonic sensors with more intricate structures. A modeled spectral response was used to study the effect of its geometrical dimensions on plasmonic behavior. A qualitative agreement between the experimental spectra and modeled ones was obtained.


Sign in / Sign up

Export Citation Format

Share Document