scholarly journals Influence of Substrate Temperature during InxSy Sputtering on Cu(In,Ga)Se2/Buffer Interface Properties and Solar Cell Performance

2020 ◽  
Vol 10 (3) ◽  
pp. 1052 ◽  
Author(s):  
Dimitrios Hariskos ◽  
Wolfram Hempel ◽  
Richard Menner ◽  
Wolfram Witte

Indium sulfide (InxSy)—besides CdS and Zn(O,S)—is already used as a buffer layer in chalcopyrite-type thin-film solar cells and modules. We discuss the influence of the substrate temperature during very fast magnetron sputtering of InxSy buffer layers on the interface formation and the performance of Cu(In,Ga)Se2 solar cells. The substrate temperature was increased from room temperature up to 240 °C, and the highest power conversion efficiencies were obtained at a temperature plateau around 200 °C, with the best values around 15.3%. Industrially relevant in-line co-evaporated polycrystalline Cu(In,Ga)Se2 absorber layers were used, which yield solar cell efficiencies of up to 17.1% in combination with a solution-grown CdS buffer. The chemical composition of the InxSy buffer as well as of the Cu(In,Ga)Se2/InxSy interface was analyzed by time-of-flight secondary ion mass spectrometry. Changes from homogenous and stoichiometric In2S3 layers deposited at RT to inhomogenous and more sulfur-rich and indium-deficient compositions for higher temperatures were observed. This finding is accompanied with a pronounced copper depletion at the Cu(In,Ga)Se2 absorber surface, and a sodium accumulation in the InxSy buffer and at the absorber/buffer interface. These last two features seem to be the origin for achieving the highest conversion efficiencies at substrate temperatures around 200 °C.

2001 ◽  
Vol 668 ◽  
Author(s):  
Bolko von Roedern

ABSTRACTBuffer layers are commonly used in the optimization of thin-film solar cells. For CuInSe2-and CdTe-based solar cells, multilayer transparent conductors (TCOs, e.g., ZnO or SnO2) are generally used in conjunction with a CdS heterojunction layer. Optimum cell performance is usually found when the TCO layer in contact with the CdS is very resistive or almost insulating. In addition to affecting the open-circuit voltage of a cell, it is commonly reported that buffer layers affect stress-induced degradation and transient phenomena in CdTe- and CuInSe2-based solar cells. In amorphous silicon solar cells, light-induced degradation has a recoverable and a nonrecoverable component too, and the details of the mechanism may depend on the p-type contact layer. Because of the similarity of transients and degradation in dissimilar material systems, it is suggested that degradation and recovery are driven by carriers rather than by diffusing atomic species. The question that must be addressed is why, not how, species diffuse and atomic configurations relax differently in the presence of excess carriers. In this paper, I suggest that the operating conditions of a cell can change the carrier transport properties. Often, excess carriers may enhance the conductance in localized regions (“filaments”) and buffer layers; limiting current flow into such filaments may therefore control the rate and amount of degradation (or recovery).


2006 ◽  
Vol 514-516 ◽  
pp. 93-97 ◽  
Author(s):  
António F. da Cunha ◽  
F. Kurdzesau ◽  
Pedro M.P. Salomé

The potential of RF-magnetron sputtering to achieve high quality Cu(In,Ga)Se2 (CIGS) thin films and efficient solar cells with the goal of using a single technique for all solar cell processing steps is explored. The end point detection method was adapted to RF-magnetron deposition of CIGS in two- or three stages sputtering process. It allows the control of the final composition of the deposited layers in a reproducible way. The influence of substrate temperature and Ar pressure during the deposition on the surface and crossectional morphology of CIGS films was studied for two and three-stage sputtering process sequence. The solar cells prepared with films deposited by two-stage sputtering nave showed a better performance with maximum efficiency above 8 %.


2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 50988-50992 ◽  
Author(s):  
Tao Yuan ◽  
Dong Yang ◽  
Xiaoguang Zhu ◽  
Lingyu Zhou ◽  
Jian Zhang ◽  
...  

The power conversion efficiency of a PTB7:PC71BM polymer solar cell was improved up to 9.1% by a combination of methanol treatment followed by conjugation of a water- or alcohol-soluble polyelectrolyte thin layer.


Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


2021 ◽  
Vol 95 (3) ◽  
pp. 30201
Author(s):  
Xi Guan ◽  
Yufei Wang ◽  
Shang Feng ◽  
Jidong Zhang ◽  
Qingqing Yang ◽  
...  

Organic solar cells (OSCs) have been fabricated using cathode buffer layers based on bathocuproine (BCP) and 4,4'-N,N'-dicarbazole-biphenyl (CBP). It is found that despite nearly same power conversion efficiencies, the bilayer of BCP/CBP shows increased thermal stability of device than the monolayer of BCP, mostly because upper CBP thin film stabilizes under BCP thin film. The mixed layer of BCP:CBP gives slightly decreased efficiency than BCP and BCP/CBP, mostly because the electron mobility of the OSC using BCP:CBP is decreased than those using BCP and BCP/CBP. However, the BCP:CBP increases thermal stability of device than BCP and BCP/CBP, ascribed to that the BCP and CBP effectively inhibit reciprocal tendencies of crystallizations in the mixed layer. Moreover, the BCP:CBP improves the light stability of device than the BCP and BCP/CBP, because the energy transfer from BCP to CBP in in the mixed layer effectively decelerates the photodegradation of BCP. We provide a facial method to improve the stabilities of cathode buffer layers against heat and light, beneficial to the commercial development of OSCs.


2014 ◽  
Vol 212 (2) ◽  
pp. 282-290 ◽  
Author(s):  
M. Buffière ◽  
S. Harel ◽  
C. Guillot-Deudon ◽  
L. Arzel ◽  
N. Barreau ◽  
...  

2015 ◽  
Vol 3 (26) ◽  
pp. 13738-13748 ◽  
Author(s):  
Gisela L. Schulz ◽  
Mirjam Löbert ◽  
Ibrahim Ata ◽  
Marta Urdanpilleta ◽  
Mika Lindén ◽  
...  

A series of dicyanovinylene-substituted A–D–A oligothiophenes with cores of varying donor strength were developed for solution-processable organic solar cells, with significant enhancement in power conversion efficiencies upon solvent vapor annealing.


Sign in / Sign up

Export Citation Format

Share Document