scholarly journals Many-Objective Optimization Design of a Public Building for Energy, Daylighting and Cost Performance Improvement

2020 ◽  
Vol 10 (7) ◽  
pp. 2435
Author(s):  
Cheng Sun ◽  
Qianqian Liu ◽  
Yunsong Han

The energy performance of buildings especially public buildings needs to be optimized together with environmental, social and cost performance, which can be achieved by the multiobjective optimization method. The traditional building performance simulation (BPS) based multiobjective optimization is time-consuming and inefficient. Practical projects of complex public building design usually involve many-objective optimization problems in which more than three objectives are considered. Using BPS based multiobjective optimization is not sufficient to solve this kind of design problem. This paper aims to propose an artificial neural network (ANN) based many-objective optimization design method, an architect-friendly integrated workflow has been implemented. The proposed method has been applied on a public library building in Changchun city of China to optimize its Energy Use Intensity (EUI), Spatial Daylight Autonomy (sDA), Useful Daylight Illuminance (UDI) and Building Envelope Cost (BEC). The optimization process has obtained 176 non-dominated solutions. By adopting the selected relative optimal solutions, 1.6×105–2.1×105 kWh energy can be saved per year; sDA value and UDI value can be increased by 8.1%–11.0% and 4.3%–4.7% respectively; BEC can be reduced by ¥1.2×105–2.1×105 ($1.7×104–3.0×104). The optimization time has been greatly shortened in this method and the whole process is highly efficient without manual data conversion between different platforms.

Author(s):  
Zhao Jing ◽  
Qin Sun ◽  
Yongjie Zhang ◽  
Ke Liang

Due to the large variable design space in optimization problems of composite laminates, it remains one of the challenging tasks to develop efficient optimization design methods to improve the design flexibility and efficiency. This work presents a sequential permutation table (SPT) method for the multiobjective optimization design of two-material hybrid composite laminates with simply supported boundary conditions, which maximizes the fundamental frequency and minimizes the cost/weight. Based on the vibration analysis of hybrid composite laminates, the approximate linear regularity of the square of fundamental frequency is derived, and two best ply orientations for the two materials are identified, respectively. By assigning one best ply orientation with maximum fundamental frequency at respective stacking positions, and using another best ply orientation to replace plies in the stacking sequence from the mid-plane to the outermost can lead to the optimum. Two multiobjective optimization problems are employed to verify the SPT method, results are compared with those obtained by heuristic algorithms. The obtained better solutions demonstrate the effectiveness and efficiency of the SPT method and its potentials for optimal design of hybrid composite laminates.


2019 ◽  
Vol 112 ◽  
pp. 01017 ◽  
Author(s):  
Martin Ivanov

The presented study reveals a dew point temperature analyses in ground floor residential room with existing thermal bridge. The dew point temperature is analysed, based on field measurements of indoor air temperature and relative humidity in the residential room, without organized occupants’ behaviour. Furthermore, the dew point temperature is cross-analysed with existing thermal bridge propagation in one of the outer walls of the room, via infrared thermal images. The results represent a valuable indicator for moisture accumulation over the thermal bridge zone, as well as an indicator for future mold growth and other humidity related problems. In the building design practice, the “thermal bridge” is defined as a distant zone, where construction elements have higher thermal conductivity, compared with the rest of the building envelope. These thermal bridges mostly affect the energy performance of the buildings, because of the higher heat losses from inside towards outside. But even more important, moisture build-up and considerable humidity related problems in the occupied areas are probable, due to the decreased surface temperature over the affected thermal zones.


2012 ◽  
Vol 7 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Yu Lay Langston ◽  
Craig Langston

This study investigates the energy and cost performance of thirty recent buildings in Melbourne, Australia. Commonly, building design decisions are based on issues pertaining to construction cost, and consideration of energy performance is made only within the context of the initial project budget. Even where energy is elevated to more importance, operating energy is seen as the focus and embodied energy is nearly always ignored. For the first time, a large sample of buildings has been assembled and analyzed to improve the understanding of both energy and cost performance over their full life cycle, which formed the basis of a wider doctoral study into the inherent relationship between energy and cost. The aim of this paper is to report on typical values for embodied energy, operating energy, capital cost and operating cost per square metre for a range of building functional types investigated in this research. The conclusion is that energy and cost have quite different profiles across projects, and yet the mean GJ/m2 or cost/m2 have relatively low coefficients of variation and therefore may be useful as benchmarks of typical building performance.  


Author(s):  
Amir Mosavi

In the most engineering optimization design problems, the value of objective functions is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Usually, these analyses are considerably time consuming to obtain a value of objective functions. In order to make the number of analyses as few as possible a methodology is presented as a supporting tool for the meta-modeling techniques. Researches in meta-modeling for multiobjective optimization are relatively young and there is still much to do. It is shown that visualizing the problem on the basis of the randomly sampled geometrical data of CAD and CAE simulation results, in addition to utilizing classification tool of data mining could be effective as a supporting system to the available meta-modeling techniques. To evaluate the effectiveness of the proposed method a study case in 3D wing design is given. Along with this example, it is discussed how effective the proposed methodology could be in the practical engineering problems.


2019 ◽  
Vol 8 (5) ◽  
pp. 366-390 ◽  
Author(s):  
Phan Anh Nguyen ◽  
Regina Bokel ◽  
Andy van den Dobbelsteen

Purpose Refurbishing houses is considered a key measure to improve the energy efficiency of the built environment. However, little is known about the implementation and outcome of housing renovation for energy upgrades in the Vietnamese practice. The purpose of this paper is to investigate the energy performance of the current housing stock in Vietnam and the potential to reduce energy use in households. Design/methodology/approach The paper is based on a survey with 153 respondents in three major climatic regions of Vietnam. The survey focusses on building characteristics, environmental performance, energy performance and refurbishment activities. Data collected from the survey were statistically analysed to give insight into the current performance of the housing stock and its energy saving potential. Findings This paper concludes that building design and construction, particularly the building envelope, have a significant influence on the occupants’ comfort. However, the energy consumption in houses is not statistically associated with building design and indoor environment. It is suggested that financial status and occupants’ behaviour currently have a strong influence on the household energy use. The survey also showed that refurbishment improves the housing performance, especially if improving the indoor environment was one of the drivers. Originality/value There are very few studies on energy use in households in Vietnam, especially with regards to actual energy consumption. This paper brings insights into the actual energy consumption and reveals the “performance gap” in Vietnamese housing stock.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2819 ◽  
Author(s):  
Honggang Fan ◽  
Jinsong Zhang ◽  
Wei Zhang ◽  
Bing Liu

Optimization design of an impeller is critical for the energy performance of a fan. This paper takes the promotion of fan efficiency and pressure rise as the optimization objectives to carry out multiparameter and multiobjective optimization research. Firstly, an experimental test bench is built to measure the energy performance of the original fan and verify the accuracy of the numerical method. Then, the hub outlet angle of impeller β1, the impeller outlet angle increment Δβ1, the wrap angle φ, the hub outlet angle of diffuser β2, and the diffuser outlet angle increment Δβ2 are set as the optimal parameters to conduct orthogonal optimal design. The results show that the efficiency of the optimal fan increases by 11.71%, and the pressure rise increases by 50.15%. The pressure and velocity distributions in an optimal fan are uniform, the internal flow separation is weakened, and the influence of tip leakage flow is reduced, which makes for the improvement of energy performance for the fan.


2018 ◽  
Vol 28 (4) ◽  
pp. 533-551 ◽  
Author(s):  
François Simon ◽  
Javier Ordoñez ◽  
Aymeric Girard ◽  
Cristobal Parrado

To reduce the energy consumption in buildings, there is a demand for tools that identify significant parameters of energy performance. The work presents the development and validation of a simulation model, called MEEDI, and graphical figures for the parametric sensitivity investigation of energy performance in different climates in Chile. The MEEDI is based on the ISO 13790 monthly calculation method of building energy use with two improved procedures for the calculation of the heat transfer through the floor and the solar heat gains. The graphical figures illustrate the effects of climate conditions, envelope components and window size and orientation on the energy consumption. The MEEDI program can contribute to find the best solution to increase energy efficiency in residential buildings. It can be adapted for various parameters, making it useful for future projects. The economic viability of specific measures for building envelope materials was analysed. Payback periods range from 5 to 27 years depending on the location and energy scenario. The study illustrates how building design decisions can have a significant impact on final energy performance. With simple envelope components modification, valuable energy gains and carbon emission reductions can be achieved in a cost-effective manner in Chile.


2021 ◽  
Author(s):  
Abdulrahman Almufarrej ◽  
Tohid Erfani

<p>Increasing buildings energy efficiency is a challenging task. The two main contributing factors that control the overall buildings energy performance are the Heating Ventilation & Air Conditioning (HVAC) system and the building envelope design. Our research investigates how three main building envelop design factors (orientation, compactness and window to wall ratio) impact the overall building’s energy consumption. We focus on typical rectangular shaped buildings and vary the geometry between a square to a rectangular floor plan to provide a basis of energy performance in early stage building design guidance. We test the analysis on building’s energy performance specific to the Middle East’s Kuwait climate condition and environment, and discuss the least energy consumption patterns. This is of importance as most of the electricity consumption in Kuwait are due to HVAC use in residential buildings. The major energy consumption factors are broken down to show how the patterns are unique compared to the previously researched efforts and how a regional set of guidance is of need. The results of this study’s implication on energy and resource use in the Gulf Cooperation Council (GCC) region is discussed, given the high proportion of GHG emission compared to the population within the region.</p>


2021 ◽  
Vol 246 ◽  
pp. 08001
Author(s):  
Alexander M. Zhivov

To provide a building design that is robust, adaptable, and affordable, one must understand the aspects of the building’s geographic location that will impact equipment selections, operating hours, and maintenance needs. One must also consider the building’s “thermal resilience,” i.e., its ability to withstand a heating plant outage. Designing for resilience is of growing importance, especially for military and government installations that must maintain critical functions even during outages. Buildings with a fast rate of temperature degradation with the loss of heating system function have low resiliency; buildings with a slower rate of temperature degradation have higher resiliency. In extreme cold climates, resiliency can play an integral role in protecting property during an outage. A drop in indoor temperature can pose a risk of freezing plumbing, which can lead to burst pipes and interior flooding that can cause enormous and costly damage, and which can effect a loss of workspace in an office building. More resilient designs must consider not only building HVAC installations, but also building envelope and the whole energy infrastructure, including thermal capacity of concrete and brick walls, internal water pipes, critical system redundancy, outside insulation without weak points, and a centrally controlled, low carbon hot water heat supply. This paper describes a quantitative approach to evaluate a system’s resiliency based on analytical and experimental studies conducted under IEA EBC Annex 73 and the Environmental Security Technology Certification Program (ESTCP) project Technologies Integration to Achieve Resilient, Low-Energy Military Installations, to evaluate building energy performance in extreme climate conditions. This work recommends that more thermally resilient designs for buildings in cold climates include consideration of increased thermal resistance of the building envelope, improved whole-building airtightness, and higher thermal mass.


Sign in / Sign up

Export Citation Format

Share Document