scholarly journals Multiparameter and Multiobjective Optimization Design Based on Orthogonal Method for Mixed Flow Fan

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2819 ◽  
Author(s):  
Honggang Fan ◽  
Jinsong Zhang ◽  
Wei Zhang ◽  
Bing Liu

Optimization design of an impeller is critical for the energy performance of a fan. This paper takes the promotion of fan efficiency and pressure rise as the optimization objectives to carry out multiparameter and multiobjective optimization research. Firstly, an experimental test bench is built to measure the energy performance of the original fan and verify the accuracy of the numerical method. Then, the hub outlet angle of impeller β1, the impeller outlet angle increment Δβ1, the wrap angle φ, the hub outlet angle of diffuser β2, and the diffuser outlet angle increment Δβ2 are set as the optimal parameters to conduct orthogonal optimal design. The results show that the efficiency of the optimal fan increases by 11.71%, and the pressure rise increases by 50.15%. The pressure and velocity distributions in an optimal fan are uniform, the internal flow separation is weakened, and the influence of tip leakage flow is reduced, which makes for the improvement of energy performance for the fan.

Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi

In order to investigate the effect of impeller tip clearance on internal flow fields and the rotating stall inception impacted by tip leakage vortex and inlet unsteady flow in a mixed-flow pump, mixed-flow pump models with tip clearances of 0.5 mm, 0.8 mm, and 1.1 mm were numerically calculated, and then the energy performance curves and internal flow structures were obtained and compared. The results show that the pump efficiency and the internal flow fields of numerical calculation are in good agreement with experimental results at design flow rate and near-stall condition. A portion of the positive slope segment appears in the energy performance curves under different tip clearances. The lowest head of the mixed-flow pump in the positive slope region decreases with the increase of the tip clearance while the highest head shows an opposite situation indicating that mixed-flow pumps are easier to stall under small tip clearance. At the design flow rate condition, the tip leakage vortex is relatively stable under different tip clearances and appears as a “snail shell” shape, whereas in rotating stall conditions, the “snail shell” shape disappear and the tip leakage flow on blade front forms a “flat” vortex structure. The inlet swirl flow not only affects the tip leakage flow in rotating stall conditions under different tip clearances, but also blocks the fluid from the inlet pipe. Under the circumstance of the same tip clearance, the main frequency amplitude of pressure pulsation coefficient gradually shifts away from blade passing frequency (96.67 Hz) to the axial frequency (24.17 Hz) when the pump operates in the stall condition.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 277
Author(s):  
Wenbin Zhao ◽  
Jianbin Hu ◽  
Kai Wang

In order to improve hydraulic efficiency, influence of inlet angle, outlet angle, wrap angle, inlet shape and outer edge camber lines of channel-diffuser blades on the energy performance of a three-stage centrifugal pump were studied and the pressure distributions on the blade of the first-stage channel-diffuser were particularly analyzed. The result shows that the efficiency of the pump is maximal when the blade inlet angle is 12°. The pressure variation in the model with the inlet angle of 12° was small and the amplitude of fluctuation was also not large. When the outlet angle was 90°, the pressure distribution in the outlet of the blades that are symmetrically distributed along the center of the diffuser shell was significantly better than that with other outlet angles. The effect of the blade wrap angle of the channel-diffuser on the energy performance of the pump was relatively small. The internal flow in the diffuser with the diffusion inlet shapes was steady for both the convex surface and concave surface. The diffusion inlet of the channel-diffuser blade corresponded to the outlet region of the impeller blade, which reflected a good matching. The fluctuation amplitude and the distribution range of the models with a uniform transition were smaller than those with non-uniform transition. In order to verify the effectiveness of the research results, an experimental test was carried out on the pump. The results show that when the flow rate is 850 m3/h, the head of the pump is 138.67 m and the efficiency of pump is 69.48%.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1653
Author(s):  
Nengqi Kan ◽  
Zongku Liu ◽  
Guangtai Shi ◽  
Xiaobing Liu

To reveal the effect of tip clearance on the flow behaviors and pressurization performance of a helico-axial flow pump, the standard k-ε turbulence model is employed to simulate the flow characteristics in the self-developed helico-axial flow pump. The pressure, streamlines and turbulent kinetic energy in a helico-axial flow pump are analyzed. Results show that the tip leakage flow (TLF) forms a tip-separation vortex (TSV) when it enters the tip clearance and forms a tip-leakage vortex (TLV) when it leaves the tip clearance. As the blade tip clearance increases, the TLV moves along the blade from the leading edge (LE) to trailing edge (TE). At the same time, the entrainment between the TLV and the main flow deteriorates the flow pattern in the pump and causes great hydraulic loss. In addition, the existence of tip clearance also increases the possibility of TLV cavitation and has a great effect on the pressurization performance of the helico-axial flow pump. The research results provide the theoretical basis for the structural optimization design of the helico-axial flow pump.


Author(s):  
Young-Jin Jung ◽  
Tae-Gon Kim ◽  
Minsuk Choi

This paper addresses the effect of the recessed blade tip with and without a porous material on the performance of a transonic axial compressor. A commercial flow solver was employed to analyze the performance and the internal flow of the axial compressor with three different tip configurations: reference tip, recessed tip and recessed tip filled with a porous material. It was confirmed that the recessed blade tip is an effective method to increase the stall margin in an axial compressor. It was also found in the present study that the strong vortex formed in the recess cavity on the tip pushed the tip leakage flow backward and weakened the tip leakage flow itself, consequently increasing the stall margin without any penalty of the efficiency in comparison to the reference tip. The recessed blade tip filled with a porous material was suggested with hope to obtain the larger stall margin and the higher efficiency. However, it was found that a porous material in the recess cavity is unfavorable to the performance in both the stall margin and the efficiency. An attempt has been made to explain the effect of the recess cavity with and without a porous material on the flow in an axial compressor.


Author(s):  
Minsuk Choi ◽  
Junyoung Park ◽  
Jehyun Baek

A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow and the loss characteristics in a low-speed axial compressor operating at the design condition (φ = 85%) and near stall condition (φ = 65%). At the design condition, independent of the inlet boundary layer thickness, flows in the axial compressor show similar characteristics such as the pressure distribution, size of hub corner-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. But, as the load is increased, for the thick inlet boundary layer at hub and casing, the hub corner stall grows to make a large separation region between the hub and suction surface, and the tip leakage flow is more vortical than that observed in the case with thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is suddenly turned to the downstream. For the thin inlet boundary layer, the hub corner stall decays to form the thick boundary layer from hub to midspan on the suction surface owing to the blockage of the tip leakage flow and the tip leakage flow leans to the circumferential direction more than at the design condition. In addition to these, the severe reverse flow, induced by both boundary layers on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in a heavy loss. As a result of these differences of the internal flow made by the different inlet boundary layer thickness, the spanwise distribution of the total loss is changed dramatically. At the design condition, total pressure losses for two different boundary layers are almost alike in the core flow region but the larger losses are generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total loss for thick inlet boundary layer is found to be greater than that for thin inlet boundary layer on most of the span except the region near the hub and casing. In order to analyze effects of inlet boundary layer thickness on total loss in detail, total loss is scrutinized through three major loss categories available in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.


Author(s):  
Shweta Dobhal ◽  
A. M. Pradeep ◽  
Bhaskar Roy

The paper reports numerical studies carried out on an aggressive turbine exhaust delivery system. A typical industrial turbine exhaust system has been used as the baseline configuration. Several geometry modifications of the diffuser system were attempted to study their effect on the diffuser performance. The geometrical modifications used were 1) Blended shapes — a blended strut-hub geometry; 2) Repositioning of the struts; and 3) contoured hub end. The performance of the diffusers has been quantified in terms of total pressure loss and static pressure rise coefficient across the diffuser. The last stage turbine tip leakage flow has been simulated by using annular casing injectors applied ahead of annular diffuser. The effect of varying the rate of injection has also been analyzed. In addition, the effect of shortening the length of the diffuser was studied. Modification-2, as stated above, has been applied on the shortened aggressive diffuser and it was observed that with injection the performance of shortened aggressive diffuser is better than that of the baseline configuration.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3575
Author(s):  
Shuo Li ◽  
Wei Li ◽  
Leilei Ji ◽  
Weidong Shi ◽  
Ramesh K. Agarwal

A multi-region dynamic slip method was established to study the internal flow characteristics of the mixed-flow pump under the Alford effect. The ANSYS Fluent software and the standard k-ε two-equation model were used to numerically predict the mixed-flow pump’s external characteristics and analyze the forces on the impeller and guide vane internal vortex structure and non-uniform tip gap of the mixed-flow pump at different eccentric distances. The research results show that the external characteristic results of the numerical calculation are consistent with the experimental measurement. The head error of the design flow operating point is about 5%, and the efficiency error is no more than 3%, indicating the high accuracy of numerical calculation. Eccentricity has a significant influence on the flow field in the tip area of the mixed-flow pump impeller, the distribution of vortex core in the impeller presents obvious asymmetry, the strength and distribution area of the vortex core in the small gap area of the tip increase obviously, which aggravates the flow instability and increases the energy loss. With the increase of eccentricity, the strength and number of vortex core structures in the guide vane also increase significantly, and obvious flow separation occurs near the inlet of the guide vane suction surface on the eccentric side of the impeller. The circumferential distribution of L1 and L2 values represents the friction pressure gap in the eccentric state, and the eccentricity has a more noticeable effect on L1 and L2 values at the small gap; With the increase of eccentricity, the values of vorticity moment components L1 and L2 increase, and the Alford moment on the impeller increases. The leading-edge region of the blade is the main part affected by the unstable torque of the flow field. With the increase of eccentricity, the impact degree of tip leakage flow deepens, and the change of the tip surface pressure is the most obvious. The impact area of tip leakage flow is mainly concentrated in the first half of the impeller channel, which has an impact on the blade inlet flow field but has little impact on the blade outlet flow field.


2021 ◽  
pp. 1-27
Author(s):  
Simon Evans ◽  
Junsok Yi ◽  
Sean Nolan ◽  
Liselle Joseph ◽  
Michael Ni ◽  
...  

Abstract In the drive for lower fuel consumption, engine designs for the next generation of single-aisle aircraft will require core sizes below 3 lb/s and OPRs above 50. Traditionally, these core sizes are the domain of centrifugal compressors, but materials limit OPR in these machines. An all-axial HPC at this core size, however, comes with limitations associated with the small blade spans at the back of the HPC, as clearances, fillets and leading edges do not scale with the core size. The result is a substantial efficiency penalty, driven primarily by the tip leakage flow produced by the larger clearance-to-span ratio. To enable small-core, high-OPR, all-axial compressors, mitigating technologies need to be developed and implemented to reduce this penalty. For this technology development to be successful, it is imperative that predictive design tools accurately model the overall flow physics and trends of the technologies developed. In this paper we describe an effort to determine whether different modeling standards are required for large clearance-to-span ratios, and if so, identify criteria for an appropriate solver and/or mesh. Multiple models are run and results compared with data collected in the NASA-GRC Low-Speed Axial Compressor. These comparisons show that steady RANS solvers can predict the pressure-rise characteristic to an acceptable level of accuracy, if careful attention is paid to mesh topology in the tip region. However, unsteady tools are necessary to accurately capture radial profiles of blockage and total pressure.


2021 ◽  
Author(s):  
Chunill Hah

Abstract The flow physics in a large rotor tip gap in a 1.5-stage axial compressor is investigated in the current study. The flow structure in the rotor tip region is complex with several dominant vortical structures of opposite rotation, resulting in inhomogeneous and highly anisotropic turbulence. Earlier measurements show that eddy viscosity is negative over large parts of the tip region and eddy viscosity varies among stress/strain components. The present study aims to understand how the complex nature of rotor tip leakage flow affects compressor performance when the tip gap size is greater than 4–5% of the rotor span, which is typical of advanced small core engines. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques are applied to study flow physics in a large rotor tip gap (5.5% of rotor span) in a 1.5-stage axial compressor. Calculated flow fields from the two different approaches are compared with available measurements and examined in detail. LES calculates the pressure rise in the present compressor fairly well, while URANS with a standard two-equation turbulence closure underpredicts the pressure rise by 15–20% of the measured values. The current study shows that URANS with the current turbulence closure produces much higher all-positive eddy viscosity in the tip-gap region compared to measurements and LES. The distribution of eddy viscosity in the URANS simulation is also wrong. Consequently, the flow in the tip region is highly damped with significantly larger blockage generation, which results in the tip leakage vortex (TLV) staying closer to the blade suction side compared to the measurement. When the TLV stays closer to the blade, both flow turning and the pressure rise across the compressor are reduced compared to the measurements. It appears that this effect is amplified by a large rotor tip gap.


Sign in / Sign up

Export Citation Format

Share Document