scholarly journals Smart Manufacturing Systems and Applied Industrial Technologies for a Sustainable Industry: A Systematic Literature Review

2020 ◽  
Vol 10 (8) ◽  
pp. 2897
Author(s):  
Raffaele Cioffi ◽  
Marta Travaglioni ◽  
Giuseppina Piscitelli ◽  
Antonella Petrillo ◽  
Adele Parmentola

Smart manufacturing is considered as a new paradigm that makes work smarter and more connected, bringing speed and flexibility through the introduction of digital innovation. Today, digital innovation is closely linked to the “sustainability” of companies. Digital innovation and sustainability are two inseparable principles that are based on the concept of circular economy. Digital innovation enables a circular economy model, promoting the use of solutions like digital platforms, smart devices, and artificial intelligence that help to optimize resources. Thus, the purpose of the research is to present a systematic literature review on what enabling technologies can promote new circular business models. A total of 31 articles were included in the study. Our results showed that realization of the circular economy involved two main changes: (i) managerial changes and (ii) legislative changes. Furthermore, the creation of the circular economy can certainly be facilitated by innovation, especially through the introduction of new technologies and through the introduction of digital innovations.

2020 ◽  
Vol 29 (4) ◽  
pp. 1734-1749 ◽  
Author(s):  
Piera Centobelli ◽  
Roberto Cerchione ◽  
Davide Chiaroni ◽  
Pasquale Del Vecchio ◽  
Andrea Urbinati

2021 ◽  
Vol 13 (10) ◽  
pp. 264
Author(s):  
Tuuli Katarina Lepasepp ◽  
William Hurst

Ever since the emergence of Industry 4.0 as the synonymous term for the fourth industrial revolution, its applications have been widely discussed and used in many business scenarios. This concept is derived from the advantages of internet and technology, and it describes the efficient synchronicity of humans and computers in smart factories. By leveraging big data analysis, machine learning and robotics, the end-to-end supply chain is optimized in many ways. However, these implementations are more challenging in heavily regulated fields, such as medical device manufacturing, as incorporating new technologies into factories is restricted by the regulations in place. Moreover, the production of medical devices requires an elaborate quality analysis process to assure the best possible outcome to the patient. Therefore, this article reflects on the benefits (features) and limitations (obstacles), in addition to the various smart manufacturing trends that could be implemented within the medical device manufacturing field by conducting a systematic literature review of 104 articles sourced from four digital libraries. Out of the 7 main themes and 270 unique applied technologies, 317 features and 117 unique obstacles were identified. Furthermore, the main findings include an overview of ways in which manufacturing could be improved and optimized within a regulated setting, such as medical device manufacturing.


2021 ◽  
pp. 386-393
Author(s):  
Beatrice Colombo ◽  
Paolo Gaiardelli ◽  
Stefano Dotti ◽  
Albachiara Boffelli

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhiting Song ◽  
Jianhua Zhu

Purpose Smart manufacturing is the prime gripper for the transformation and upgrading of the manufacturing industry. Smart manufacturing systems (SMSs) largely determine how smart manufacturing evolves in technical and organizational dimensions and how it realizes values in products, production or services. SMSs are growing rapidly and receiving tons of attention from academic research and industrial practice. However, the development of SMSs is still in its fancy, and many issues wait to be identified and solved, such as single point failures, low transparency and ineffective resource sharing. Blockchain, an emerging technology deriving from Bitcoin, is competent to aid SMSs to conquer troubles due to its decentralization, traceability, trackability, disintermediation, auditability and etc. The purpose of this paper is to investigate the blockchain applications in SMSs, seek out the challenges faced by blockchain-enabled SMSs (BSMSs) and provide referable research directions and ideas. Design/methodology/approach A comprehensive literature review as a survey is conducted in this paper. The survey starts by introducing blockchain concepts, followed by the descriptions of a literature review method and the blockchain applications throughout the product life cycle in SMSs. Then, the key issues and challenges confronting BSMSs are discussed and some possible research directions are also proposed. It finally presents qualitative and quantitative descriptions of BSMSs, along with some conclusions and implications. Findings The findings of this paper present a deep understanding about the current status and challenges of blockchain adoption in SMSs. Furthermore, this paper provides a brand new thinking for future research. Originality/value This paper minutely analyzes the impacts that blockchain exerts on SMSs in view of the product life cycle, and proposes using the complexity science thinking to deal with BSMSs qualitatively and quantitatively, including tackling the current major problems BSMSs face. This research can serve as a foundation for future theoretical studies and enterprise practice.


2021 ◽  
Vol 13 (8) ◽  
pp. 192
Author(s):  
Maarit Tihinen ◽  
Ari Pikkarainen ◽  
Jukka Joutsenvaara

Digitalization is boosting the manufacturing industry’s shift to smart manufacturing systems, which will efficiently utilize the potential of new technologies for their business outcomes and value. However, the literature shows that manufacturing companies have implemented very little digital technology due to a lack of the required knowledge and competences. Increasingly, interconnected, digitalized, and complex processes lead to new skill requirements in companies and thereafter also of their workforce’s training needs to respond to the smart manufacturing’s new great expectations. The article provides concrete examples of tackling challenges in education arising from digital manufacturing. The case study introduced in this article concerns the additive manufacturing (AM) method, which is expected to give rise to significant changes in various industrial fields, including digital manufacturing. Advances in digital manufacturing requires skilled professionals who are aware of the possibilities and potential of the latest technology. Education therefore needs to be developed. This article points out that the built learning and development environment, SmartLab, supports multidisciplinary approaches and close collaboration between several stakeholders like companies, engineering education courses, students, and RDI actors. The SmartLab concept is thus also expected to provide a remarkable competitive advantage for business in the region.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1252
Author(s):  
Hatim M. Dawood ◽  
Chee Yoong Liew ◽  
Teck Chai Lau

The banking and financial sectors have witnessed a significant development recently due to financial technology (FinTech), and it has become an essential part of the financial system. Many factors helped the development of this sector, including the pandemics such as Covid-19, the considerable increasing market value of the FinTech sector worldwide, and new technologies such as blockchain, artificial intelligence, big data, cloud computing and mobile technology. Moreover, changes in consumer's preferences, especially the Z-generation (digital generation). FinTech shifted the traditional business models to mobile platforms characterized by ease of access and swift transactions. Mobile technology became the main backbone for FinTech innovations and acts as a channel to deliver FinTech services that overcome all geographical and timing barriers, thus enhancing financial inclusion. Mobile perceived Trust (MPT), or the trust in using financial business models via mobile technology, is a crucial factor in the FinTech context that has mediation effects on the intention and adoption of different FinTech business models. Unfortunately, few studies have explored MPT mediations on consumers' intention to adopt FinTech innovations using mobile technology. Typically, many studies examined trust/MPT as an independent and unidirectional variable and investigated its effects on behaviour intention without predicting its mediation effects. This study aimed to develop a systematic literature review on MPT mediation in FinTech, focusing on the period from 2016 and 2021, in journals ranked Q1 and Q2, and known-based theories such as the technology acceptance model, the unified theory of acceptance and use of technology, and the mobile technology acceptance model. This study found that only four articles were published in Q1 and Q2 journals. In these articles, the MPT was used as a mediator, and its effects were measured on the intention and adoption of the behaviour.


2020 ◽  
Vol 25 (3) ◽  
pp. 505-525 ◽  
Author(s):  
Seeram Ramakrishna ◽  
Alfred Ngowi ◽  
Henk De Jager ◽  
Bankole O. Awuzie

Growing consumerism and population worldwide raises concerns about society’s sustainability aspirations. This has led to calls for concerted efforts to shift from the linear economy to a circular economy (CE), which are gaining momentum globally. CE approaches lead to a zero-waste scenario of economic growth and sustainable development. These approaches are based on semi-scientific and empirical concepts with technologies enabling 3Rs (reduce, reuse, recycle) and 6Rs (reuse, recycle, redesign, remanufacture, reduce, recover). Studies estimate that the transition to a CE would save the world in excess of a trillion dollars annually while creating new jobs, business opportunities and economic growth. The emerging industrial revolution will enhance the symbiotic pursuit of new technologies and CE to transform extant production systems and business models for sustainability. This article examines the trends, availability and readiness of fourth industrial revolution (4IR or industry 4.0) technologies (for example, Internet of Things [IoT], artificial intelligence [AI] and nanotechnology) to support and promote CE transitions within the higher education institutional context. Furthermore, it elucidates the role of universities as living laboratories for experimenting the utility of industry 4.0 technologies in driving the shift towards CE futures. The article concludes that universities should play a pivotal role in engendering CE transitions.


2021 ◽  
Vol 13 (10) ◽  
pp. 5495
Author(s):  
Mihai Andronie ◽  
George Lăzăroiu ◽  
Roxana Ștefănescu ◽  
Cristian Uță ◽  
Irina Dijmărescu

With growing evidence of the operational performance of cyber-physical manufacturing systems, there is a pivotal need for comprehending sustainable, smart, and sensing technologies underpinning data-driven decision-making processes. In this research, previous findings were cumulated showing that cyber-physical production networks operate automatically and smoothly with artificial intelligence-based decision-making algorithms in a sustainable manner and contribute to the literature by indicating that sustainable Internet of Things-based manufacturing systems function in an automated, robust, and flexible manner. Throughout October 2020 and April 2021, a quantitative literature review of the Web of Science, Scopus, and ProQuest databases was performed, with search terms including “Internet of Things-based real-time production logistics”, “sustainable smart manufacturing”, “cyber-physical production system”, “industrial big data”, “sustainable organizational performance”, “cyber-physical smart manufacturing system”, and “sustainable Internet of Things-based manufacturing system”. As research published between 2018 and 2021 was inspected, and only 426 articles satisfied the eligibility criteria. By taking out controversial or ambiguous findings (insufficient/irrelevant data), outcomes unsubstantiated by replication, too general material, or studies with nearly identical titles, we selected 174 mainly empirical sources. Further developments should entail how cyber-physical production networks and Internet of Things-based real-time production logistics, by use of cognitive decision-making algorithms, enable the advancement of data-driven sustainable smart manufacturing.


Sign in / Sign up

Export Citation Format

Share Document