scholarly journals A Novel Fast Terminal Sliding Mode Tracking Control Methodology for Robot Manipulators

2020 ◽  
Vol 10 (9) ◽  
pp. 3010 ◽  
Author(s):  
Quang Vinh Doan ◽  
Anh Tuan Vo ◽  
Tien Dung Le ◽  
Hee-Jun Kang ◽  
Ngoc Hoai An Nguyen

This paper comes up with a novel Fast Terminal Sliding Mode Control (FTSMC) for robot manipulators. First, to enhance the response, fast convergence time, against uncertainties, and accuracy of the tracking position, the novel Fast Terminal Sliding Mode Manifold (FTSMM) is developed. Then, a Supper-Twisting Control Law (STCL) is applied to combat the unknown nonlinear functions in the control system. By using this technique, the exterior disturbances and uncertain dynamics are compensated more rapidly and more correctly with the smooth control torque. Finally, the proposed controller is launched from the proposed sliding mode manifold and the STCL to provide the desired performance. Consequently, the stabilization and robustness criteria are guaranteed in the designed system with high-performance and limited chattering. The proposed controller runs without a precise dynamic model, even in the presence of uncertain components. The numerical examples are simulated to evaluate the effectiveness of the proposed control method for trajectory tracking control of a 3-Degrees of Freedom (DOF) robotic manipulator.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper studies the fixed-time trajectory tracking control problem of robot manipulators in the presence of uncertain dynamics and external disturbances. First, a novel nonsingular fixed-time sliding mode surface is presented, which can ensure that the convergence time of the suggested surface is bounded regardless of the initial states. Subsequently, a novel fast nonsingular fixed-time sliding mode control (NFNFSMC) is developed so that the closed-loop system is fixed-time convergent to the equilibrium. By applying the proposed NFNFSMC method and the adaptive technique, a novel adaptive nonsingular fixed-time control scheme is proposed, which can guarantee fast fixed-time convergence of the tracking errors to small regions around the origin. With the proposed control method, the lumped disturbance is compensated by the adaptive technique, whose prior information about the upper bound is not needed. The fixed-time stability of the trajectory tracking control under the proposed controller is proved by the Lyapunov stability theory. Finally, corresponding simulations are given to illustrate the validity and superiority of the proposed control approach.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juntao Fei ◽  
Zhe Wang ◽  
Xiao Liang

In this paper, a robust adaptive fractional fast terminal sliding mode controller is introduced into the microgyroscope for accurate trajectory tracking control. A new fast terminal switching manifold is defined to ensure fast finite convergence of the system states, where a fractional-order differentiation term emerges into terminal sliding surface, which additionally generates an extra degree of freedom and leads to better performance. Adaptive algorithm is applied to estimate the damping and stiffness coefficients, angular velocity, and the upper bound of the lumped nonlinearities. Numerical simulations are presented to exhibit the validity of the proposed method, and the comparison with the other two methods illustrates its superiority.


2019 ◽  
Vol 16 (1) ◽  
pp. 172988141982817 ◽  
Author(s):  
Saeed Amirkhani ◽  
Saleh Mobayen ◽  
Nahal Iliaee ◽  
Olfa Boubaker ◽  
S Hassan Hosseinnia

In this article, a fast terminal sliding mode control technique is used for robust tracking control of a nonlinear uncertain mass–spring system in the existence of external perturbation. This system is considered as a benchmark problem in the flexible joint mechanisms. The joints flexibility in the robotic systems creates one of the most significant sources of parametric uncertainties. The theory of Lyapunov stability is used for the formulation of the proposed control method, and the presence of the sliding around the switching surface is satisfied in the finite time. Simulation results as well as the experimental verifications prove the efficiency and applicability of the suggested approach in the presence of parametric uncertainty, noise, and exterior disturbance.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yaoyao Wang ◽  
Kangwu Zhu ◽  
Bai Chen ◽  
Hongtao Wu

In this paper, we propose a novel model-free trajectory tracking control for robot manipulators under complex disturbances. The proposed method utilizes time delay control (TDC) as its control framework to ensure a model-free scheme and uses adaptive nonsingular terminal sliding mode (ANTSM) to obtain high control accuracy and fast dynamic response under lumped disturbance. Thanks to the application of adaptive law, the proposed method can ensure high tracking accuracy and effective suppression of noise effect simultaneously. Stability of the closed-loop control system is proved using Lyapunov method. Finally, the effectiveness and advantages of the newly proposed TDC scheme with ANTSM dynamics are verified through several comparative simulations.


Sign in / Sign up

Export Citation Format

Share Document