scholarly journals A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019

2020 ◽  
Vol 10 (12) ◽  
pp. 4356 ◽  
Author(s):  
Luke Blentlinger ◽  
Hannah V. Herrero

The lowland savannas of Belize are important areas to conserve for their biodiversity. This study takes place in Payne’s Creek National Park (PCNP) in the southern coastal plain of Belize. PCNP protects diverse terrestrial and coastal ecosystems, unique physical features, and wildlife. A Support Vector Machine (SVM) classification technique was used to classify the heterogeneous landscape of PCNP to characterize woody and non-woody conversion in a time-series of remotely sensed data from 1975, 1993, 2011 and 2019. Results indicate that the SVM classifier performs well in this small savanna landscape (average overall accuracy of 91.9%) with input variables of raw Landsat imagery, the Normalized Difference Vegetation Index (NDVI), elevation, and soil type. Our change trajectory analysis shows that PCNP is a relatively stable landscape, but with certain areas that are prone to multiple conversions in the time-series. Woody vegetation mostly occurs in areas with variable slopes and riparian zones with increased nutrient availability. This study does not show extensive woody conversion in PCNP, contrary to widespread woody encroachment that is occurring in savannas on other continents. These high-performing SVM classification maps and future studies will be an important resource of information on Central American savanna vegetation dynamics for savanna scientists and land managers that use adaptive management for ecosystem preservation.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


2012 ◽  
Vol 518-523 ◽  
pp. 5623-5626
Author(s):  
Guo Qing Sun ◽  
Yu Huan Ren ◽  
Meng Meng Liu ◽  
Zhu Mei Liu ◽  
Ya Lan Liu

In order to improve the efficiency and cost-saving investigation for sensitive land parcels for road route selecting, this paper demonstrates the methodology of Support Vector Machine (SVM) classification combining with the Normalized Difference Vegetation Index (NDVI) to identify the land parcels using ALOS remote sensing data. One part of the road corridor is taken as the study area in City Group of Changsha, Zhuzhou and Xiangtan, which is regarded as the two society pilot area. The results show that the high effectiveness and applicability of the method in high density vegetation coverage mountainous regions.


2018 ◽  
pp. 19 ◽  
Author(s):  
Y. Julien ◽  
J. A. Sobrino

<p>This paper introduces the Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) dataset, intended to provide a benchmark for the validation and comparison of time series reconstruction methods. Such methods are routinely used to estimate vegetation characteristics from optical remotely sensed data, where the presence of clouds decreases the usefulness of the data. As for their validation, these methods have been compared with previously published ones, although with different approaches, which sometimes lead to contradictory results. We designed the TISSBERT dataset to be generic so that it could simulate realistic reference and cloud-contaminated time series at global scale. To that end, we estimated both cloud-free and cloud-contaminated Normalized Difference Vegetation Index (NDVI) statistics for randomly selected control points and each day of the year from the Long Term Data Record Version 4 (LTDR-V4) dataset by assuming different statistical distributions. The best approach was then applied to the whole dataset, and validity of the results were estimated through the Kolmogorov-Smirnov statistic. The dataset elaboration is described thoroughly along with how to use it. The advantages and drawbacks of this dataset are then discussed, which emphasize the realistic simulation of the cloud-contaminated and reference time series. This dataset can be obtained from the authors upon demand. It will be used in a next paper to compare widely used NDVI time series reconstruction methods.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 478
Author(s):  
Ha Thi Thu Nguyen ◽  
Loc Van Nguyen ◽  
C.A.J.M (Kees) de Bie ◽  
Ignacio A. Ciampitti ◽  
Duc Anh Nguyen ◽  
...  

Land use maps specifying up-to-date acreage information on maize (Zea mays L.) cropping patterns are required by many stakeholders in Vietnam. Government statistics, however, lag behind by one year, and the official land use maps are only updated at 5-year intervals. The aim of this study was to apply the Savitzky–Golay algorithm to reconstruct noisy Enhanced Vegetation Index (EVI) time series (2003–2018) from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1) to allow timely detection of changes in maize crop phenology, and then to employ a linear kernel Support Vector Machine (SVM) classifier on the reconstructed EVI time series to prepare the present-day maize cropping pattern map of Dak Lak province of Vietnam. The method was able to specify the spatial extent of areas cropped to maize with an overall map accuracy of 79% and could also differentiate the areas cropped to maize just once versus twice annually. The by-district mapped maize acreage shows a good agreement with the official governmental data, with a 0.93 correlation coefficient (r) and a root mean square deviation (RMSD) of 1624 ha.


Author(s):  
Satomi Kimijima ◽  
Masayuki Sakakibara ◽  
Masahiko Nagai ◽  
Nurfitri Gafur

Mining sites development have had a significant impact on local socioeconomic conditions, the environment, and sustainability. However, the transformation of camp-type artisanal and small-scale gold mining (ASGM) sites with large influxes of miners from different regions has not been properly evaluated, owing to the closed nature of the ASGM sector. Here, we use remote sensing imagery and field investigations to assess ASGM sites with large influxes of miners living in mining camps in Bone Bolango Regency, Gorontalo Province, Indonesia, in 1995–2020. Built-up areas were identified as indicators of transformation of camp-type ASGM sites, using the Normalized Difference Vegetation Index, from the time series of images obtained using Google Earth Engine, then correlated with the prevalent gold market price. An 18.6-fold increase in built-up areas in mining camps was observed in 2020 compared with 1995, which correlated with increases in local gold prices. Field investigations showed that miner influx also increased after increases in gold prices. These findings extend our understanding of the rate and scale of development in the closed ASGM sector and the driving factors behind these changes. Our results provide significant insight into the potential rates and levels of socio-environmental pollution at local and community levels.


2019 ◽  
Vol 11 (11) ◽  
pp. 1370 ◽  
Author(s):  
Petar Dimitrov ◽  
Qinghan Dong ◽  
Herman Eerens ◽  
Alexander Gikov ◽  
Lachezar Filchev ◽  
...  

This paper presents the results of a sub-pixel classification of crop types in Bulgaria from PROBA-V 100 m normalized difference vegetation index (NDVI) time series. Two sub-pixel classification methods, artificial neural network (ANN) and support vector regression (SVR) were used where the output was a set of area fraction images (AFIs) at 100 m resolution with pixels containing estimated area fractions of each class. High-resolution maps of two test sites derived from Sentinel-2 classifications were used to obtain training data for the sub-pixel classifications. The estimated area fractions have a good correspondence with the true area fractions when aggregated to regions of 10 × 10 km2, especially when the SVR method was used. For the five dominant classes in the test sites the R2 obtained after the aggregation was 86% (winter cereals), 81% (sunflower), 92% (broad-leaved forest), 89% (maize), and 67% (grasslands) when the SVR method was used.


2020 ◽  
Vol 12 (3) ◽  
pp. 476 ◽  
Author(s):  
Hannah Herrero ◽  
Peter Waylen ◽  
Jane Southworth ◽  
Reza Khatami ◽  
Di Yang ◽  
...  

Understanding trends or changes in biomass and biodiversity around conservation areas in Africa is important and has economic and societal impacts on the surrounding communities. Gorongosa National Park, Mozambique was established under unique conditions due to its complex history. In this study, we used a time-series of Normalized Difference Vegetation Index (NDVI) to explore seasonal trends in biomass between 2000 and 2016. In addition, vegetation directional persistence was created. This product is derived from the seasonal NDVI time series-based analysis and represents the accumulation of directional change in NDVI relative to a fixed benchmark (2000–2004). Trends in precipitation from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) was explored from 2000–2016. Different vegetation covers are also considered across various landscapes, including a comparison between the Lower Gorongosa (savanna), Mount Gorongosa (rainforest), and surrounding buffer zones. Important findings include a decline in precipitation over the time of study, which most likely drives the observed decrease in NDVI. In terms of vegetation persistence, Lower Gorongosa had stronger positive trends than the buffer zone, and Mount Gorongosa had higher negative persistence overall. Directional persistence also varied by vegetation type. These are valuable findings for park managers and conservationists across the world.


2021 ◽  
Vol 9 (2) ◽  
pp. 13-24
Author(s):  
Binod Baniya ◽  
Narayan Prasad Gaire ◽  
Qua-anan Techato ◽  
Yubraj Dhakal ◽  
Yam Prasad Dhital

Identification of high altitudinal vegetation dynamics using remote sensing is important because of the complex topography and environment in the Himalayas. Langtang National Park is the first Himalayan park in Nepal representing the best area to study vegetation change in the central Himalaya region because of the high altitudinal gradient and relatively less disturbed region. This study aimed at mapping vegetation in Langtang National Park and its treeline ecotone using Moderate Resolution Imaging Spectroradiometer (MODIS), Normalized Difference Vegetation Index (NDVI). Two treeline sites with an altitude of 3927 and 3802 meters above sea level (masl) were selected, and species density was measured during the field survey. The linear slope for each pixel and the Mann Kendall test to measure significant trends were used. The results showed that NDVI has significantly increased at the rate of 0.002yr-1 in Langtang National Park and 0.003yr-1 in treeline ecotone during 2000-2017. The average 68.73% equivalents to 1463 km2 of Langtang National Park are covered by vegetation. At the same time, 16.45% equivalents to 350.43 km2 are greening, and 0.25%, i.e., 5.43 km2 are found browning. In treeline ecotone, the vegetation is mostly occupied by grasses, shrublands and small trees where the NDVI was found from 0.1 to 0.5. The relative changes of NDVI in barren lands are negative and vegetative lands above 0.5 NDVI are positive between 2000 and 2017. The dominant treeline vegetation were Abies spectabilis, Rhododendron campanulatum, Betula utilis and Sorbus microphyla, with the vegetation density of 839.28 and 775 individuals per hectare in sites A and B, respectively. The higher average NDVI values, significantly increased NDVI, and higher density of vegetation in both A and B sites indicate that the vegetation in treeline ecotone is obtaining a good environment in the Himalayas of Nepal.


2020 ◽  
Vol 963 (9) ◽  
pp. 53-64
Author(s):  
V.F. Kovyazin ◽  
Thi Lan Anh Dang ◽  
Viet Hung Dang

Tram Chim National Park in Southern Vietnam is a wetland area included in the system of specially protected natural areas (SPNA). For the purposes of land monitoring, we studied Landsat-5 and Sentinel-2B images obtained in 1991, 2006 and 2019. The methods of normalized difference vegetation index (NDVI) and water objects – normalized difference water index (NDWI) were used to estimate the vegetation in National Park. The allocated land is classifi ed by the maximum likelihood method in ENVI 5.3 into categories. For each image, a statistical analysis of the land after classifi cation was performed. Between 1991 and 2019, land changes occurred in about 57 % of the Tram Chim National Park total area. As a result, the wetland area has signifi cantly reduced there due to climate change. However, the area of Melaleuca forests in Tram Chim National Park has increased due to the effi ciency of reforestation in protected areas. Melaleuca forests are also being restored.


2021 ◽  
Vol 13 (9) ◽  
pp. 1618
Author(s):  
Melakeneh G. Gedefaw ◽  
Hatim M. E. Geli ◽  
Temesgen Alemayehu Abera

Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity.


Sign in / Sign up

Export Citation Format

Share Document