scholarly journals Structural Correlation Based Method for Image Forgery Classification and Localization

2020 ◽  
Vol 10 (13) ◽  
pp. 4458
Author(s):  
Nam Thanh Pham ◽  
Jong-Weon Lee ◽  
Chun-Su Park

In the image forgery problems, previous works has been chiefly designed considering only one of two forgery types: copy-move and splicing. In this paper, we propose a scheme to handle both copy-move and splicing image forgery by concurrently classifying the image forgery types and localizing the forged regions. The structural correlations between images are employed in the forgery clustering algorithm to assemble relevant images into clusters. Then, we search for the matching of image regions inside each cluster to classify and localize tampered images. Comprehensive experiments are conducted on three datasets (MICC-600, GRIP, and CASIA 2) to demonstrate the better performance in forgery classification and localization of the proposed method in comparison with state-of-the-art methods. Further, in copy-move localization, the source and target regions are explicitly specified.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1229 ◽  
Author(s):  
Jia Ming Yeoh ◽  
Fabio Caraffini ◽  
Elmina Homapour ◽  
Valentino Santucci ◽  
Alfredo Milani

This article presents the Optimised Stream clustering algorithm (OpStream), a novel approach to cluster dynamic data streams. The proposed system displays desirable features, such as a low number of parameters and good scalability capabilities to both high-dimensional data and numbers of clusters in the dataset, and it is based on a hybrid structure using deterministic clustering methods and stochastic optimisation approaches to optimally centre the clusters. Similar to other state-of-the-art methods available in the literature, it uses “microclusters” and other established techniques, such as density based clustering. Unlike other methods, it makes use of metaheuristic optimisation to maximise performances during the initialisation phase, which precedes the classic online phase. Experimental results show that OpStream outperforms the state-of-the-art methods in several cases, and it is always competitive against other comparison algorithms regardless of the chosen optimisation method. Three variants of OpStream, each coming with a different optimisation algorithm, are presented in this study. A thorough sensitive analysis is performed by using the best variant to point out OpStream’s robustness to noise and resiliency to parameter changes.



2020 ◽  
Vol 8 (1) ◽  
pp. 84-90
Author(s):  
R. Lalchhanhima ◽  
◽  
Debdatta Kandar ◽  
R. Chawngsangpuii ◽  
Vanlalmuansangi Khenglawt ◽  
...  

Fuzzy C-Means is an unsupervised clustering algorithm for the automatic clustering of data. Synthetic Aperture Radar Image Segmentation has been a challenging task because of the presence of speckle noise. Therefore the segmentation process can not directly rely on the intensity information alone but must consider several derived features in order to get satisfactory segmentation results. In this paper, it is attempted to use the fuzzy nature of classification for the purpose of unsupervised region segmentation in which FCM is employed. Different features are obtained by filtering of the image by using different spatial filters and are selected for segmentation criteria. The segmentation performance is determined by the accuracy compared with a different state of the art techniques proposed recently.



2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.



Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.



2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Iram Tazim Hoque ◽  
Nabil Ibtehaz ◽  
Saumitra Chakravarty ◽  
M. Saifur Rahman ◽  
M. Sohel Rahman

Abstract Background Segmentation of nuclei in cervical cytology pap smear images is a crucial stage in automated cervical cancer screening. The task itself is challenging due to the presence of cervical cells with spurious edges, overlapping cells, neutrophils, and artifacts. Methods After the initial preprocessing steps of adaptive thresholding, in our approach, the image passes through a convolution filter to filter out some noise. Then, contours from the resultant image are filtered by their distinctive contour properties followed by a nucleus size recovery procedure based on contour average intensity value. Results We evaluate our method on a public (benchmark) dataset collected from ISBI and also a private real dataset. The results show that our algorithm outperforms other state-of-the-art methods in nucleus segmentation on the ISBI dataset with a precision of 0.978 and recall of 0.933. A promising precision of 0.770 and a formidable recall of 0.886 on the private real dataset indicate that our algorithm can effectively detect and segment nuclei on real cervical cytology images. Tuning various parameters, the precision could be increased to as high as 0.949 with an acceptable decrease of recall to 0.759. Our method also managed an Aggregated Jaccard Index of 0.681 outperforming other state-of-the-art methods on the real dataset. Conclusion We have proposed a contour property-based approach for segmentation of nuclei. Our algorithm has several tunable parameters and is flexible enough to adapt to real practical scenarios and requirements.



Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Marco Antonio Tangaro ◽  
Pietro Mandreoli ◽  
David S Horner ◽  
...  

Abstract Summary While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional annotation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that, by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary patterns in the genome of SARS-CoV-2. Availabilityand implementation Galaxy   http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker: https://hub.docker.com/r/laniakeacloud/galaxy_corgat. Supplementary information Supplementary data are available at Bioinformatics online.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Anlay Fante ◽  
Mohammed Aliy

Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.



Author(s):  
Elvis Ahmetović ◽  
Zdravko Kravanja ◽  
Nidret Ibrić ◽  
Ignacio E. Grossmann ◽  
Luciana E. Savulescu




Sign in / Sign up

Export Citation Format

Share Document