scholarly journals Structural, Vibrational and Electrochemical Analysis and Antibacterial Potential of Isomeric Chalcones Derived from Natural Acetophenone

2020 ◽  
Vol 10 (14) ◽  
pp. 4713 ◽  
Author(s):  
Priscila Teixeira da Silva ◽  
Thiago Sampaio de Freitas ◽  
Diniz Maciel Sena ◽  
Paulo Nogueira Bandeira ◽  
Murilo Ségio da Silva Julião ◽  
...  

Background: Chalcones are part of a family of small phenolic compounds that are being extensively studied for presenting a diversity of molecular structures and biological activities. In this paper, two chalcones, (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (1), (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (2), were synthesized by Claisen–Schmidt condensation. Methods: The molecular structures of these chalcones were determined by Nuclear Magnetic Resonance and characterized by infrared, Raman spectroscopy, and electrochemical analysis at room temperature. Vibrational wavenumbers were predicted using Functional Density Theory (DFT) calculations, and their normal modes were analyzed in terms of potential energy distribution (PED). Besides this, DFT calculations were performed to obtain the molecular orbitals and their quantum descriptors. The UV-Vis absorption spectrum of the synthesized chalcones was measured and compared with each other. In addition, analyses of antimicrobial activity and modulation of antibiotic resistance were carried out to assess the antibacterial potential of these chalcones. Results: The vibrational spectra of polycrystalline chalcones obtained by ATR-FTIR, FT-Raman and DFT calculations allowed a complete assignment of the vibrational modes, and revealed the quantum chemical parameters. Both chalcones did not show good responses when associated with the antibiotics Ciprofloxacin and Cephalexin against S. aureus 10 and E. coli 06 strains. However, a significant potentiating of the Gentamicin activity against S. aureus 10 and E. col 06 strains was observed for chalcone 2. On the other hand, when associated with Norfloxacin, an antagonistic effect was observed. The results found for EtBr suggest that, although the tested chalcones behave as efflux pump inhibitors, probably inhibiting other efflux pumps, they were not able to inhibit NorA. Thus, these synthetic chalcones are not recommended for use in association with Norfloxacin against strains of S. aureus 1199-B that overexpress the NorA gene. Conclusions: Spectroscopic data confirmed the structure of the chalcones, and chalcone 2 showed potential as an adjuvant in antibiotic therapy.

2020 ◽  
Vol 22 (29) ◽  
pp. 16965-16977 ◽  
Author(s):  
Thiago V. Acunha ◽  
Henrique F. V. Victória ◽  
Klaus Krambrock ◽  
Amanda C. Marques ◽  
Luiz Antônio S. Costa ◽  
...  

The photophysical properties of two meso–trans-A2B-type corroles containing phenyl or pyrenyl units were reported in this study. TD-DFT calculations and electrochemical analysis were conducted to better understand the corrole molecular structures.


2020 ◽  
Vol 16 ◽  
Author(s):  
Délis Galvão Guimarães ◽  
Arlan de Assis Gonsalves ◽  
Larissa Araújo Rolim ◽  
Edigênia Cavalcante Araújo ◽  
Victória Laysna dos Anjos Santos ◽  
...  

Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, then the modification at their redox center is an interesting strategy to overcome such harmful activity. Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β-lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity. Method: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media. Result: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, being compounds 3 and 4 the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC50 values in the range 2.90–12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte. Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.


2020 ◽  
Vol 14 ◽  
Author(s):  
Soufiane Akhramez ◽  
Youness Achour ◽  
Mustapha Diba ◽  
Lahoucine Bahsis ◽  
Hajiba Ouchetto ◽  
...  

Background: In this study, an efficient synthesis of novel bispyrazole heterocyclic molecules by condensation of substituted aromatic aldehydes with 1,3-diketo-N-phenylpyrazole by using Mg/Al-LDH as heterogeneous catalyst is reported. The attractive features of this protocol are as follows: mild reaction conditions, good yields and easiness of the catalyst separation from the reaction mixture. Further, a mechanistic study has been performed by using DFT calculations to explain the observed selectivity of the condensation reaction between aryl aldehyde and 1,3-diketo-N-phenylpyrazole via Knoevenagel reaction. The local electrophilicity/ nucleophilicity that allows explaining correctly the experimental finding. Methods: The bispyrazole derivatives 3a-m were prepared by condensation reaction of substituted aromatic aldehydes with 1,3-diketo-Nphenylpyrazole by using Mg/Al-LDH as heterogeneous catalyst under THF solvent at the refluxing temperature. Objective: To synthesize a novel bispyrazole heterocyclic molecule may be have important biological activities and thus can be good candidates for pharmaceutical applications. Results: This protocol describes the Synthesis of Bioactive Compounds under mild reaction conditions, good yields and easiness of the catalyst separation from the reaction mixture. Further, a mechanistic study has been performed by using DFT calculations to explain the observed selectivity of the condensation reaction between aryl aldehyde and 1,3-diketo-N-phenylpyrazole via Knoevenagel reaction. The local electrophilicity/ nucleophilicity that allows explaining correctly the experimental finding. Conclusion: In summary, the pharmacologically interesting bis-pyrazole derivatives have been synthesized through Mg/Al-LDH as a solid base catalyst, in THF as solvent. Thus, the synthesized bioactive compounds containing the pyrazole ring may be have important biological activities and thus can be good candidates for pharmaceutical applications. Therefore, the catalyst Mg/Al-LDH showed high catalytic activity. Besides, a series of bispyrazole molecules were synthesized with a good yield and easy separation of the catalyst by simple filtration. Moreover, DFT calculations and reactivity indexes are used to explain the selectivity of the condensation reaction between aryl benzaldehyde and 1,3-diketo-Nphenylpyrazole via Knoevenagel reaction, and the results are in good agreement with the experimental finding.


2021 ◽  
Vol 10 (3) ◽  
pp. 2506-2514

Psidium guajava is a tropical evergreen tree. It belongs to the family Myrtaceae that consists of about 133 genera and approximately 3800 species worldwide. This plant is mainly found in South Africa, North Africa, South America, and Southeast Asia. Psidium guajava is mainly a nutritional plant, but it also shows various biological activities. An array of bioactive constituents, viz; glycosides, terpenoids, tannins, alkaloids, steroids, saponins, amino acids, anthraquinones, proteins, flavonoids, and phenols, etc. have been isolated from Psidium guajava. These phytochemicals are well known for their biological activities, including antibacterial, antioxidant, antifungal, etc. The present work has been performed to gather data about the traditional uses, important phytochemicals, and antibacterial efficiency of Psidium guajava. Many pharmacological studies have demonstrated its antibacterial potential against various important drug resistive pathogens. We invite researchers' attention to carry out detailed antibacterial studies on this valuable plant species to provide reliable knowledge to the patients and discover more novel compounds for the development of new drugs with fewer side effects compared to conventional medicines.


1973 ◽  
Vol 27 (3) ◽  
pp. 209-213 ◽  
Author(s):  
John F. Jackovitz ◽  
Charles E. Falletta ◽  
James C. Carter

Infrared and Raman spectra for (K+) (CF3BF3−) have been obtained from 4000 to 50 cm−1. Spectral assignments were made on the basis of C3v symmetry using both 10B and 11B compounds. In addition, a normal coordinate analysis was performed to obtain the potential energy distribution of the normal modes. A Urey-Bradley type force field was used, and force constants obtained for the CF3 and BF3 groupings were compared to those in C2F6 and BF4−.


2015 ◽  
Vol 39 (1) ◽  
pp. 520-528 ◽  
Author(s):  
Saoussen Haddad ◽  
Sarra Boudriga ◽  
Tarunkumar Nanjibhai Akhaja ◽  
Jignesh Priyakant Raval ◽  
François Porzio ◽  
...  

A series of spirooxindole pyrrolidine derivatives has been synthesized and evaluated for theirin vitrobiological activities. The observed regio- and stereoselectivity of the cycloaddition reaction has been rationalized using DFT calculations.


Author(s):  
Maryam Hamzeh-Mivehroud ◽  
Babak Sokouti ◽  
Siavoush Dastmalchi

The need for the development of new drugs to combat existing and newly identified conditions is unavoidable. One of the important tools used in the advanced drug development pipeline is computer-aided drug design. Traditionally, to find a drug many ligands were synthesized and evaluated for their effectiveness using suitable bioassays and if all other drug-likeness features were met, the candidate(s) would possibly reach the market. Although this approach is still in use in advanced format, computational methods are an indispensable component of modern drug development projects. One of the methods used from very early days of rationalizing the drug design approaches is Quantitative Structure-Activity Relationship (QSAR). This chapter overviews QSAR modeling steps by introducing molecular descriptors, mathematical model development for relating biological activities to molecular structures, and model validation. At the end, several successful cases where QSAR studies were used extensively are presented.


Oncology ◽  
2017 ◽  
pp. 20-66
Author(s):  
Maryam Hamzeh-Mivehroud ◽  
Babak Sokouti ◽  
Siavoush Dastmalchi

The need for the development of new drugs to combat existing and newly identified conditions is unavoidable. One of the important tools used in the advanced drug development pipeline is computer-aided drug design. Traditionally, to find a drug many ligands were synthesized and evaluated for their effectiveness using suitable bioassays and if all other drug-likeness features were met, the candidate(s) would possibly reach the market. Although this approach is still in use in advanced format, computational methods are an indispensable component of modern drug development projects. One of the methods used from very early days of rationalizing the drug design approaches is Quantitative Structure-Activity Relationship (QSAR). This chapter overviews QSAR modeling steps by introducing molecular descriptors, mathematical model development for relating biological activities to molecular structures, and model validation. At the end, several successful cases where QSAR studies were used extensively are presented.


Sign in / Sign up

Export Citation Format

Share Document