scholarly journals An Incentive Factor-Based Dynamic Comprehensive Evaluation on a High-Speed Railway Track

2020 ◽  
Vol 10 (16) ◽  
pp. 5546
Author(s):  
Xiaohui Wang ◽  
Jianwei Yang ◽  
Jinhai Wang ◽  
Yanxue Wang ◽  
Guiyang Xu

Peak management and mean management are common ways to manage the quality of high-speed railway tracks at present. The most popular method for evaluating such tracks is the track quality index (TQI) method, which can reflect the overall state of the equipment to a certain extent. However, this method is likely to ignore some potential risks that threaten the operation of a high-speed train. For more effective risk identification, an incentive factor-based dynamic comprehensive evaluation (DCE) method was introduced to assess the geometric parameters of a high-speed railway track. Moreover, the weights of geometric parameters were computed by a combination of the analytic hierarchy process (AHP) and entropy based on the correlation coefficient. The proposed method can highlight the sensitivity index of the geometric parameters, which is an advantage over the TQI method. A case study of a high-speed railway track was performed using the two methods, and the results were verified with the original data. It was found that the TQI method identified only one obvious risk while the proposed method identified one obvious risk and two potential risks. This suggests that the proposed method is more accurate in identifying the risky sections than the TQI method.

2022 ◽  
Vol 355 ◽  
pp. 02019
Author(s):  
Qihui Xiong ◽  
Shiwu Yang ◽  
Chang Liu

As the density of the high-speed railway network continues to increase, the problem of electromagnetic interference on adjacent lines has become increasingly prominent. This paper focuses on the electromagnetic interference of adjacent lines caused by rail and line in the signal transmission process of the high-speed rail track circuit. Firstly, complete the establishment of the four-terminal network model of the ZPW-2000A track circuit system and the cab signal entry current crosstalk model, calculation of interference voltage under different parallel length of signal frequency. Then the interference factors and coupling mechanism of adjacent lines are analysed to realize calculation of interference amount. Finally, according to the sensitivity index of the cab signal, the maximum parallel length of adjacent sections is given respect, and the interference protection suggestions of adjacent lines are put forward. The research work of this paper provides a theoretical basis for suppressing the interference of adjacent lines and guarantees the safe and efficient operation of high-speed trains.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


2021 ◽  
Vol 27 (4) ◽  
pp. 04021030
Author(s):  
Xiaohui Wang ◽  
Jianwei Yang ◽  
Jinhai Wang ◽  
Yanxue Wang ◽  
Fu Liu

2018 ◽  
Vol 8 (5) ◽  
pp. 667 ◽  
Author(s):  
Song Liu ◽  
Jun Yang ◽  
Xianhua Chen ◽  
Guotao Yang ◽  
Degou Cai

Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 87-98
Author(s):  
Haiyan Li ◽  
Zhiwu Yu ◽  
Jianfeng Mao ◽  
Lizhong Jiang

2019 ◽  
Vol 9 (16) ◽  
pp. 3345 ◽  
Author(s):  
Chen ◽  
Qin ◽  
Xia ◽  
Bao ◽  
Huang ◽  
...  

The dimension detection of high-speed railway track slabs is one of the most important tasks before the track slabs delivery. Based on the characteristics of a 3D scanner which can acquire a large amount of measurement data continuously and rapidly in a short time, this paper uses the integration of 3D scanner and the intelligent robot to detect the CRTSIII (China Railway Track System) track slab supporting block plane, then the dense and accurate supporting block plane point cloud data is obtained, and the point cloud data is registered with the established model. An improved Random Sample Consensus (RANSAC) plane fitting algorithm is also proposed to extract the data of supporting block plane point cloud in this paper. The detection method is verified and the quality analysis of the detection results is assessed by a lot of real point cloud data obtained on site. The results show that the method can meet the quality control of CRTSIII finished track slab and the detection standard. Compared with the traditional detection methods, the detection method proposed in this paper can complete the detection of a track slab in 7 min, which greatly improves the detection efficiency, and has better reliability. The method has wide application prospects in the field of railway component detection.


Sign in / Sign up

Export Citation Format

Share Document