scholarly journals Object Detection Using Multi-Scale Balanced Sampling

2020 ◽  
Vol 10 (17) ◽  
pp. 6053
Author(s):  
Hang Yu ◽  
Jiulu Gong ◽  
Derong Chen

Detecting small objects and objects with large scale variants are always challenging for deep learning based object detection approaches. Many efforts have been made to solve these problems such as adopting more effective network structures, image features, loss functions, etc. However, for both small objects detection and detecting objects with various scale in single image, the first thing should be solve is the matching mechanism between anchor boxes and ground-truths. In this paper, an approach based on multi-scale balanced sampling(MB-RPN) is proposed for the difficult matching of small objects and detecting multi-scale objects. According to the scale of the anchor boxes, different positive and negative sample IOU discriminate thresholds are adopted to improve the probability of matching the small object area with the anchor boxes so that more small object samples are included in the training process. Moreover, the balanced sampling method is proposed for the collected samples, the samples are further divided and uniform sampling to ensure the diversity of samples in training process. Several datasets are adopted to evaluate the MB-RPN, the experimental results show that compare with the similar approach, MB-RPN improves detection performances effectively.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


2019 ◽  
Vol 11 (7) ◽  
pp. 755 ◽  
Author(s):  
Xiaodong Zhang ◽  
Kun Zhu ◽  
Guanzhou Chen ◽  
Xiaoliang Tan ◽  
Lifei Zhang ◽  
...  

Object detection on very-high-resolution (VHR) remote sensing imagery has attracted a lot of attention in the field of image automatic interpretation. Region-based convolutional neural networks (CNNs) have been vastly promoted in this domain, which first generate candidate regions and then accurately classify and locate the objects existing in these regions. However, the overlarge images, the complex image backgrounds and the uneven size and quantity distribution of training samples make the detection tasks more challenging, especially for small and dense objects. To solve these problems, an effective region-based VHR remote sensing imagery object detection framework named Double Multi-scale Feature Pyramid Network (DM-FPN) was proposed in this paper, which utilizes inherent multi-scale pyramidal features and combines the strong-semantic, low-resolution features and the weak-semantic, high-resolution features simultaneously. DM-FPN consists of a multi-scale region proposal network and a multi-scale object detection network, these two modules share convolutional layers and can be trained end-to-end. We proposed several multi-scale training strategies to increase the diversity of training data and overcome the size restrictions of the input images. We also proposed multi-scale inference and adaptive categorical non-maximum suppression (ACNMS) strategies to promote detection performance, especially for small and dense objects. Extensive experiments and comprehensive evaluations on large-scale DOTA dataset demonstrate the effectiveness of the proposed framework, which achieves mean average precision (mAP) value of 0.7927 on validation dataset and the best mAP value of 0.793 on testing dataset.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3031
Author(s):  
Jing Lian ◽  
Yuhang Yin ◽  
Linhui Li ◽  
Zhenghao Wang ◽  
Yafu Zhou

There are many small objects in traffic scenes, but due to their low resolution and limited information, their detection is still a challenge. Small object detection is very important for the understanding of traffic scene environments. To improve the detection accuracy of small objects in traffic scenes, we propose a small object detection method in traffic scenes based on attention feature fusion. First, a multi-scale channel attention block (MS-CAB) is designed, which uses local and global scales to aggregate the effective information of the feature maps. Based on this block, an attention feature fusion block (AFFB) is proposed, which can better integrate contextual information from different layers. Finally, the AFFB is used to replace the linear fusion module in the object detection network and obtain the final network structure. The experimental results show that, compared to the benchmark model YOLOv5s, this method has achieved a higher mean Average Precison (mAP) under the premise of ensuring real-time performance. It increases the mAP of all objects by 0.9 percentage points on the validation set of the traffic scene dataset BDD100K, and at the same time, increases the mAP of small objects by 3.5%.


2021 ◽  
Vol 13 (18) ◽  
pp. 3622
Author(s):  
Xu He ◽  
Shiping Ma ◽  
Linyuan He ◽  
Le Ru ◽  
Chen Wang

Oriented object detection in remote sensing images (RSIs) is a significant yet challenging Earth Vision task, as the objects in RSIs usually emerge with complicated backgrounds, arbitrary orientations, multi-scale distributions, and dramatic aspect ratio variations. Existing oriented object detectors are mostly inherited from the anchor-based paradigm. However, the prominent performance of high-precision and real-time detection with anchor-based detectors is overshadowed by the design limitations of tediously rotated anchors. By using the simplicity and efficiency of keypoint-based detection, in this work, we extend a keypoint-based detector to the task of oriented object detection in RSIs. Specifically, we first simplify the oriented bounding box (OBB) as a center-based rotated inscribed ellipse (RIE), and then employ six parameters to represent the RIE inside each OBB: the center point position of the RIE, the offsets of the long half axis, the length of the short half axis, and an orientation label. In addition, to resolve the influence of complex backgrounds and large-scale variations, a high-resolution gated aggregation network (HRGANet) is designed to identify the targets of interest from complex backgrounds and fuse multi-scale features by using a gated aggregation model (GAM). Furthermore, by analyzing the influence of eccentricity on orientation error, eccentricity-wise orientation loss (ewoLoss) is proposed to assign the penalties on the orientation loss based on the eccentricity of the RIE, which effectively improves the accuracy of the detection of oriented objects with a large aspect ratio. Extensive experimental results on the DOTA and HRSC2016 datasets demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 13 (16) ◽  
pp. 3182
Author(s):  
Zheng He ◽  
Li Huang ◽  
Weijiang Zeng ◽  
Xining Zhang ◽  
Yongxin Jiang ◽  
...  

The detection of elongated objects, such as ships, from satellite images has very important application prospects in marine transportation, shipping management, and many other scenarios. At present, the research of general object detection using neural networks has made significant progress. However, in the context of ship detection from remote sensing images, due to the elongated shape of ship structure and the wide variety of ship size, the detection accuracy is often unsatisfactory. In particular, the detection accuracy of small-scale ships is much lower than that of the large-scale ones. To this end, in this paper, we propose a hierarchical scale sensitive CenterNet (HSSCenterNet) for ship detection from remote sensing images. HSSCenterNet adopts a multi-task learning strategy. First, it presents a dual-direction vector to represent the posture or direction of the tilted bounding box, and employs a two-layer network to predict the dual direction vector, which improves the detection block of CenterNet, and cultivates the ability of detecting targets with tilted posture. Second, it divides the full-scale detection task into three parallel sub-tasks for large-scale, medium-scale, and small-scale ship detection, respectively, and obtains the final results with non-maximum suppression. Experimental results show that, HSSCenterNet achieves a significant improved performance in detecting small-scale ship targets while maintaining a high performance at medium and large scales.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1686 ◽  
Author(s):  
Feng Yang ◽  
Wentong Li ◽  
Haiwei Hu ◽  
Wanyi Li ◽  
Peng Wang

Accurate and robust detection of multi-class objects in very high resolution (VHR) aerial images has been playing a significant role in many real-world applications. The traditional detection methods have made remarkable progresses with horizontal bounding boxes (HBBs) due to CNNs. However, HBB detection methods still exhibit limitations including the missed detection and the redundant detection regions, especially for densely-distributed and strip-like objects. Besides, large scale variations and diverse background also bring in many challenges. Aiming to address these problems, an effective region-based object detection framework named Multi-scale Feature Integration Attention Rotation Network (MFIAR-Net) is proposed for aerial images with oriented bounding boxes (OBBs), which promotes the integration of the inherent multi-scale pyramid features to generate a discriminative feature map. Meanwhile, the double-path feature attention network supervised by the mask information of ground truth is introduced to guide the network to focus on object regions and suppress the irrelevant noise. To boost the rotation regression and classification performance, we present a robust Rotation Detection Network, which can generate efficient OBB representation. Extensive experiments and comprehensive evaluations on two publicly available datasets demonstrate the effectiveness of the proposed framework.


2019 ◽  
Vol 11 (5) ◽  
pp. 594 ◽  
Author(s):  
Shuo Zhuang ◽  
Ping Wang ◽  
Boran Jiang ◽  
Gang Wang ◽  
Cong Wang

With the rapid advances in remote-sensing technologies and the larger number of satellite images, fast and effective object detection plays an important role in understanding and analyzing image information, which could be further applied to civilian and military fields. Recently object detection methods with region-based convolutional neural network have shown excellent performance. However, these two-stage methods contain region proposal generation and object detection procedures, resulting in low computation speed. Because of the expensive manual costs, the quantity of well-annotated aerial images is scarce, which also limits the progress of geospatial object detection in remote sensing. In this paper, on the one hand, we construct and release a large-scale remote-sensing dataset for geospatial object detection (RSD-GOD) that consists of 5 different categories with 18,187 annotated images and 40,990 instances. On the other hand, we design a single shot detection framework with multi-scale feature fusion. The feature maps from different layers are fused together through the up-sampling and concatenation blocks to predict the detection results. High-level features with semantic information and low-level features with fine details are fully explored for detection tasks, especially for small objects. Meanwhile, a soft non-maximum suppression strategy is put into practice to select the final detection results. Extensive experiments have been conducted on two datasets to evaluate the designed network. Results show that the proposed approach achieves a good detection performance and obtains the mean average precision value of 89.0% on a newly constructed RSD-GOD dataset and 83.8% on the Northwestern Polytechnical University very high spatial resolution-10 (NWPU VHR-10) dataset at 18 frames per second (FPS) on a NVIDIA GTX-1080Ti GPU.


Sign in / Sign up

Export Citation Format

Share Document