scholarly journals Transient and Harmonic Unipolar Hysteresis Model of Piezoelectric Actuators Using a System-Level Approach

2020 ◽  
Vol 10 (20) ◽  
pp. 7268
Author(s):  
Mickaël Lallart ◽  
Kui Li ◽  
Zhichun Yang ◽  
Shengxi Zhou

Thanks to their integrability and good electromechanical conversion abilities, piezoelectric actuators are a good choice for many actuation applications. However, these elements feature a frequency-dependent hysteresis response that may yield complex control implementation. The purpose of this paper is to provide the extension of a simple hysteresis model based on a system-level approach linking the strain derivative to the driving voltage derivative and taking into account the dynamic behavior of the hysteretic response of the actuator. The proposed enhancement consists of transient and harmonic regimes, allowing to extend the quasi-static model to dynamic behavior with any frequency. In particular, initial strain shift arising from stabilization and accommodation effects as well as frequency-dependent hysteresis shape are considered. The inclusion of the system dynamics in the model is obtained thanks to fractional derivatives and associated fractional transfer functions, allowing the consideration of the full actuator history as well as a fine tuning of the system dynamics over a wide frequency band. Finally, a numerical example of linearized control through compensation loop is provided, demonstrating the interest in the proposed approach for providing a computationally-efficient, simple yet efficient way for finely predicting the actuator response and thus designing appropriate controllers.

AIP Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 065204 ◽  
Author(s):  
Jinqiang Gan ◽  
Xianmin Zhang ◽  
Heng Wu

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Sina Hamian ◽  
Andrew M. Gauffreau ◽  
Timothy Walsh ◽  
Jungchul Lee ◽  
Keunhan Park

This paper reports the frequency-dependent electrothermal behaviors of a freestanding doped-silicon heated microcantilever probe operating under periodic (ac) Joule heating. We conducted a frequency-domain finite-element analysis (FEA) and compared the steady periodic solution with 3ω experiment results. The computed thermal transfer function of the cantilever accurately predicts the ac electrothermal behaviors over a full spectrum of operational frequencies, which could not be accomplished with the 1D approximation. In addition, the thermal transfer functions of the cantilever in vacuum and in air were compared, through which the frequency-dependent heat transfer coefficient of the air was quantified. With the developed FEA model, design parameters of the cantilever (i.e., the size and the constriction width of the cantilever heater) and their effects on the ac electrothermal behaviors were carefully investigated. Although this work focused on doped-Si heated microcantilever probes, the developed FEA model can be applied for the ac electrothermal analysis of general microelectromechanical systems.


Author(s):  
Senthil Murugan Nagarajan ◽  
Muthukumaran V. ◽  
Vinoth Kumar V. ◽  
Beschi I. S. ◽  
S. Magesh

The workflow between business and manufacturing system level is changing leading to delay in exploring the context of innovative ideas and solutions. Smart manufacturing systems progress rapid growth in integrating the operational capabilities of networking functionality and communication services with cloud-based enterprise architectures through runtime environment. Fine tuning aims to process intelligent management, flexible monitoring, dynamic network services using internet of things (IoT)-based service oriented architecture (SOA) solutions in numerous enterprise systems. SOA is an architectural pattern for building software business systems based on loosely coupled enterprise infrastructure services and components. The IoT-based SOA enterprise systems incorporate data elicitation, integrating agile methodologies, orchestrate underlying black-box services by promoting growth in manufacturer enterprises workflow. This chapter proposes the integration of standard workflow model between business system level and manufacturing production level with an IoT-enabled SOA framework.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yassin Belkourchia ◽  
Lahcen Azrar

The dynamic behavior of structures with piezoelectric patches is governed by partial differential equations with strong singularities. To directly deal with these equations, well adapted numerical procedures are required. In this work, the differential quadrature method (DQM) combined with a regularization procedure for space and implicit scheme for time discretization is used. The DQM is a simple method that can be implemented with few grid points and can give results with a good accuracy. However, the DQM presents some difficulties when applied to partial differential equations involving strong singularities. This is due to the fact that the subsidiaries of the singular functions cannot be straightforwardly discretized by the DQM. A methodological approach based on the regularization procedure is used here to overcome this difficulty and the derivatives of the Dirac-delta function are replaced by regularized smooth functions. Thanks to this regularization, the resulting differential equations can be directly discretized using the DQM. The efficiency and applicability of the proposed approach are demonstrated in the computation of the dynamic behavior of beams for various boundary conditions and excited by impulse and Multiharmonics piezoelectric actuators. The obtained numerical results are well compared to the developed analytical solution.


2019 ◽  
Vol 25 (23-24) ◽  
pp. 2863-2874 ◽  
Author(s):  
Jingjing Zhang ◽  
Diyi Chen ◽  
Hao Zhang ◽  
Beibei Xu ◽  
Huanhuan Li ◽  
...  

Hydraulic generating systems are widely modeled in the literature for investigating their stability properties by means of transfer functions representing the dynamic behavior of the reservoir, penstock, surge tank, hydro-turbine, and the generator. Traditionally, in these models the electrical load is assumed constant to simplify the modeling process. This assumption can hide interesting dynamic behaviors caused by fluctuation of the load as actually occurred. Hence, in this study, the electrical load characterized with periodic excitation is introduced into a hydraulic generating system and the responses of the system show a novel dynamic behavior called the fast–slow dynamic phenomenon. To reveal the nature of this phenomenon, the effects of the three parameters (i.e., differential adjustment coefficient, amplitude, and frequency) on the dynamic behaviors of the hydraulic generating system are investigated, and the corresponding change rules are presented. The results show that the intensity of the fast–slow dynamic behaviors varies with the change of each parameter, which provides reference for the quantification of the hydraulic generating system parameters. More importantly, these results not only present rich nonlinear phenomena induced by multi-timescales, but also provide some theoretical bases for maintaining the safe and stable operation of a hydropower station.


2012 ◽  
Vol 21 (07) ◽  
pp. 1250058
Author(s):  
BINGBING XIA ◽  
FEI QIAO ◽  
ZIDONG DU ◽  
DI ZHU ◽  
HUAZHONG YANG

H.264 video decoder is a good choice for embedded video processing applications because of its higher compression ratio than MPEG2, although it has higher requirements of run-time computational resource. Multi-core system is the future of the embedded processor design for its power efficiency and multi-thread parallelization capability, and can be used to fit well with the requirements for such video processing algorithms. To simulate and evaluate the performance of these multi-core systems effectively, a design flow at the system level is developed, at the higher level, the combination of TLM language (SystemC) and shared-memory parallel programming model (OpenMP) is used for such transaction-level simulation, and at the lower level, a multi-core simulator based on the extension of the SimpleScalar 3.0 ToolSet is developed for the cycle-accurate level simulation. Compared with other high-level simulation methods, ours has the ability to realize the true-parallelization simulation. What is more, experiments show that such simulation methodology can effectively simulate these complex multi-core applications in a short time to get the appropriate core number and the task allocation strategy (much less than RTL-level simulation) and the results can get at less than 15% deviated from the ideal ones calculated based on Amadal's Law, so the parallelization strategy obtained from such simulation is the best one that can be further applied for the RTL-level design of the final multi-core system.


Sign in / Sign up

Export Citation Format

Share Document