Study on the dynamic behavior of thickness-stretch piezoelectric actuators used in crack detection

Author(s):  
Shi-liang Lv ◽  
Shao-hua Guo
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yassin Belkourchia ◽  
Lahcen Azrar

The dynamic behavior of structures with piezoelectric patches is governed by partial differential equations with strong singularities. To directly deal with these equations, well adapted numerical procedures are required. In this work, the differential quadrature method (DQM) combined with a regularization procedure for space and implicit scheme for time discretization is used. The DQM is a simple method that can be implemented with few grid points and can give results with a good accuracy. However, the DQM presents some difficulties when applied to partial differential equations involving strong singularities. This is due to the fact that the subsidiaries of the singular functions cannot be straightforwardly discretized by the DQM. A methodological approach based on the regularization procedure is used here to overcome this difficulty and the derivatives of the Dirac-delta function are replaced by regularized smooth functions. Thanks to this regularization, the resulting differential equations can be directly discretized using the DQM. The efficiency and applicability of the proposed approach are demonstrated in the computation of the dynamic behavior of beams for various boundary conditions and excited by impulse and Multiharmonics piezoelectric actuators. The obtained numerical results are well compared to the developed analytical solution.


Author(s):  
D Mateescu ◽  
Y Han ◽  
A Misra

This article presents an analysis of the dynamics of damaged structures with bonded piezoelectric strips executing flexural oscillations generated by mechanical loads, piezoelectric actuators or unsteady aerodynamic loads. These oscillations can be used to detect the presence of cracks for structural health monitoring. The proposed method of crack detection uses pairs of piezoelectric strip sensors bonded on the opposite sides of the structure and is based on the fact that the presence of a crack causes a difference between the strains measured by the two sensors of a pair. The structural analysis presented in this article uses a non-linear model for the cracks and a finite-element formulation for the piezoelectric strips coupled with the structure. A panel method is used to determine the unsteady aerodynamic loads acting on the oscillating wing structure. This study includes the dynamic analysis in the frequency domain of a cracked plate undergoing forced flexural vibrations in a range of frequencies generated by a pair of piezoelectric actuators. The dynamic analysis in the time domain is also performed for the oscillating structures with piezoelectric strips subjected to mechanical or unsteady aerodynamic loads. It was found that this method is quite effective in detecting cracks in the wing structures subjected to oscillatory aerodynamic loads.


Author(s):  
Riki IWAI ◽  
Michio TSUKUI ◽  
Kohro TAKATSUKA ◽  
Tsuneo AKUTO

2003 ◽  
Vol 70 (6) ◽  
pp. 832-839 ◽  
Author(s):  
N. Pugno ◽  
A. Carpinteri

In this paper a general study on tubular adhesive joint under axial load is presented. We focus our attention on both static and dynamic behavior of the joint, including shear and normal stresses and strains in the adhesive layer, joint optimization, failure load for brittle crack propagation, and crack detection based on free vibrations. First, we have considered the shear and normal stresses and strains in the adhesive layer to propose an optimization to uniform axial strength (UAS) and to reduce the stress peaks in the bond. The stress analysis confirms that the maximum shear stresses are attained at the ends of the adhesive and that the peak of maximum shear stress is reached at the end of the stiffer tube and does not tend to zero as the adhesive length approaches infinity. A fracture energy criterion to predict brittle crack propagation for conventional and optimized joint is presented. The stability of brittle crack propagation and the strength of the joint, as well as the ductile-brittle failure transition, are analyzed. A detection method to predict crack severity, based on joint dynamic behavior, is also proposed. The crack detection is achieved through the determination of the axial natural frequencies of the joint as a function of the crack length, by determining the roots of a determinantal equation.


Author(s):  
Yong Han ◽  
Dan Mateescu ◽  
Arun K. Misra

This paper studies the aeroelastic oscillations of wing-like structures with the aim to detect at an incipient stage the presence of structural cracks. Such oscillations occur normally in certain flight evolutions of aircraft or can be excited by piezoelectric actuators bonded on the wing structure. These oscillations can be used to detect at an early stage the presence of cracks by monitoring the response of several piezoelectric sensors bonded on both sides of the structure during the aeroelastic oscillations. The proposed method of crack detection uses pairs of piezoelectric strip sensors bonded on the opposite sides of the structure and is based on the fact that the presence of a crack causes a difference between the strains measured by the two sensors of a pair. The structural analysis presented in this paper uses a nonlinear model for the cracks and a finite element formulation for the piezoelectric strips coupled with the structure. A 3D panel method developed by the authors is used to determine the unsteady aerodynamic loads acting on the oscillating wing structure. The dynamic analysis in the time domain is performed for the oscillating structures with piezoelectric strips subjected to unsteady aerodynamic loads. In the present work, the efficiency of this crack detection method is studied in realistic situations, by considering the aeroelastic oscillations in flexion and torsion of a wing-like structure which are excited in one of the following modes: (i) the aeroelastic oscillations excited by a pair of piezoelectric actuators bonded on the opposite sides of the structure; (ii) the aeroelastic oscillations excited by the harmonic oscillation of the angle of attack corresponding to the flight in atmospheric turbulence (harmonic gust); (iii) the aeroelastic oscillations generated by a sudden change in the angle of attack or in the airplane velocity due to a pilot control input. The numerical simulations for these cases have been performed by the simultaneous solution of the coupled equations of unsteady fluid flow and of the structure deformation motion, by using a finite element method for the dynamic of the structures with cracks and bonded piezoelectric strips, and a 3D panel method developed by the authors for the calculation of the unsteady aerodynamic loads. These numerical simulations have shown that the presence of a crack in the structure can be efficiently detected at an early stage by monitoring the response of the pairs of piezoelectric sensors.


2020 ◽  
Vol 10 (20) ◽  
pp. 7268
Author(s):  
Mickaël Lallart ◽  
Kui Li ◽  
Zhichun Yang ◽  
Shengxi Zhou

Thanks to their integrability and good electromechanical conversion abilities, piezoelectric actuators are a good choice for many actuation applications. However, these elements feature a frequency-dependent hysteresis response that may yield complex control implementation. The purpose of this paper is to provide the extension of a simple hysteresis model based on a system-level approach linking the strain derivative to the driving voltage derivative and taking into account the dynamic behavior of the hysteretic response of the actuator. The proposed enhancement consists of transient and harmonic regimes, allowing to extend the quasi-static model to dynamic behavior with any frequency. In particular, initial strain shift arising from stabilization and accommodation effects as well as frequency-dependent hysteresis shape are considered. The inclusion of the system dynamics in the model is obtained thanks to fractional derivatives and associated fractional transfer functions, allowing the consideration of the full actuator history as well as a fine tuning of the system dynamics over a wide frequency band. Finally, a numerical example of linearized control through compensation loop is provided, demonstrating the interest in the proposed approach for providing a computationally-efficient, simple yet efficient way for finely predicting the actuator response and thus designing appropriate controllers.


Author(s):  
Matthew L. Grier ◽  
Nader Jalili

A cantilever rubber beam with laminated piezoelectric actuators and sensors is initially tested to determine the properties governing the dynamic behavior of the beam. Various techniques are employed to estimate beam properties such as elastic stiffness, damping coefficient and natural frequencies, as well as piezoelectric actuator capabilities for vibration control purposes. A simplified Euler-Bernoulli model is proposed, which is validated using the properties previously discovered. A passive electric shunt circuit is then proposed for the beam vibration suppression, when subjected to external excitation forces. Simulation of a series resistor-inductor shunt circuit is used to demonstrate the capability of altering the beam’s dynamic behavior. Various methods for tuning the shunt circuit are explored in an effort to achieve optimal vibration suppression characteristics. Furthermore, experimental testing is conducted for validation of simulation results, which also yields similar information about passive shunting techniques for vibration damping.


1997 ◽  
Vol 9 (2) ◽  
pp. 59-79 ◽  
Author(s):  
J. Mattsson ◽  
A. J. Niklasson ◽  
A. Eriksson

Sign in / Sign up

Export Citation Format

Share Document