scholarly journals Prediction of Machine Inactivation Status Using Statistical Feature Extraction and Machine Learning

2020 ◽  
Vol 10 (21) ◽  
pp. 7413
Author(s):  
Taing Borith ◽  
Sadirbaev Bakhit ◽  
Aziz Nasridinov ◽  
Kwan-Hee Yoo

In modern manufacturing, the detection and prediction of machine anomalies, i.e., the inactive state of the machine during operation, is an important issue. Accurate inactive state detection models for factory machines can result in increased productivity. Moreover, they can guide engineers in implementing appropriate maintenance actions, which can prevent catastrophic failures and minimize economic losses. In this paper, we present a novel two-step data-driven method for the non-active detection of industry machines. First, we propose a feature extraction approach that aims to better distinguish the pattern of the active state and non-active state of the machine by multiple statistical analyses, such as reliability, time-domain, and frequency-domain analyses. Next, we construct a method to detect the active and non-active status of an industrial machine by applying various machine learning methods. The performance evaluation with a real-world dataset from the automobile part manufacturer demonstrates the proposed method achieves high accuracy.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Hao Zhang ◽  
Zhanliang Sang ◽  
Lingwei Xu ◽  
Conghui Cao ◽  
...  

Automatic modulation recognition has successfully used various machine learning methods and achieved certain results. As a subarea of machine learning, deep learning has made great progress in recent years and has made remarkable progress in the field of image and language processing. Deep learning requires a large amount of data support. As a communication field with a large amount of data, there is an inherent advantage of applying deep learning. However, the extensive application of deep learning in the field of communication has not yet been fully developed, especially in underwater acoustic communication. In this paper, we mainly discuss the modulation recognition process which is an important part of communication process by using the deep learning method. Different from the common machine learning methods that require feature extraction, the deep learning method does not require feature extraction and obtains more effects than common machine learning.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7620
Author(s):  
Zhenyi Ye ◽  
Yuan Liu ◽  
Qiliang Li

Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics, food engineering, environment monitoring, and medical diagnosis. Recently, many machine learning techniques have been studied, developed, and integrated into feature extraction, modeling, and gas sensor drift compensation. The purpose of feature extraction is to keep robust pattern information in raw signals while removing redundancy and noise. With the extracted feature, a proper modeling method can effectively use the information for prediction. In addition, drift compensation is adopted to relieve the model accuracy degradation due to the gas sensor drifting. These recent advances have significantly promoted the prediction accuracy and stability of the E-Nose. This review is engaged to provide a summary of recent progress in advanced machine learning methods in E-Nose technologies and give an insight into new research directions in feature extraction, modeling, and sensor drift compensation.


2022 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Xueyuan Tang ◽  
Sheng Dong ◽  
Kun Luo ◽  
Jingxue Guo ◽  
Lin Li ◽  
...  

The airborne ice-penetrating radar (IPR) is an effective method used for ice sheet exploration and is widely applied for detecting the internal structures of ice sheets and for understanding the mechanism of ice flow and the characteristics of the bottom of ice sheets. However, because of the ambient influence and the limitations of the instruments, IPR data are frequently overlaid with noise and interference, which further impedes the extraction of layer features and the interpretation of the physical characteristics of the ice sheet. In this paper, we first applied conventional filtering methods to remove the feature noise and interference in IPR data. Furthermore, machine learning methods were introduced in IPR data processing for noise removal and feature extraction. Inspired by a comparison of the filtering methods and machine learning methods, we propose a fusion method combining both filtering methods and machine-learning-based methods to optimize the feature extraction in IPR data. Field data tests indicated that, under different conditions of IPR data, the application of different methods and strategies can improve the layer feature extraction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rui Li ◽  
Qingjin Peng

Background: Shape segmentation is commonly required in many engineering fields to separate a 3D shape into pieces for some specific applications. Although there are different methods proposed to segment the 3D shape, there is a lack of analyses of their efficiency and accuracy. It is a challenge to select an effective method to meet a particular requirement of the shape segmentation. Objective: This paper reviews existing methods of the shape segmentation to summarize the methods and processes to identify their pros and cons. Method: The process of the shape segmentation is summarized in two steps of the feature extraction and model separation. Results: Shape features are identified from the available methods. Different methods of the shape segmentation are evaluated. The challenge and trend of the shape segmentation are discussed. Conclusion: Clustering is the most used method for the shape segmentation. Machine learning methods are trend of 3D shape segmentations for identification, analysis and reconstruction of large-scale models.


Author(s):  
Vempati Ramsanthosh ◽  
Anati Sai Laxmi ◽  
Chepuri Sai Abhinay ◽  
Vadepally Santosh ◽  
Vybhav Kothareddy ◽  
...  

Identifying of the plant diseases is essential in prevention of yield and volume losses in agriculture Product. Studies of plant diseases mean studies of visually observable patterns on the plant. Health surveillance and detecting diseases in plants is essential for sustainable development agriculture. It is very difficult to monitor plant diseases manually. It requires a lot of experiences in work, expertise in these field plant diseases and also requires excessive processing time. Therefore; image processing is used to detect plant diseases. Disease detection includes steps such as acquisition, image Pre-processing, image segmentation, feature extraction and Classification. We describe these methods for the detection of plant diseases on the basis of their leaf images; automatic detection of plant disease is done by the image processing and machine learning. The different leaf images of plant disease are collected and feature extracted of the various machine learning methods.


2019 ◽  
Vol 9 (5) ◽  
pp. 940 ◽  
Author(s):  
Huseyin Polat ◽  
Homay Danaei Mehr

Lung cancer is the most common cause of cancer-related deaths worldwide. Hence, the survival rate of patients can be increased by early diagnosis. Recently, machine learning methods on Computed Tomography (CT) images have been used in the diagnosis of lung cancer to accelerate the diagnosis process and assist physicians. However, in conventional machine learning techniques, using handcrafted feature extraction methods on CT images are complicated processes. Hence, deep learning as an effective area of machine learning methods by using automatic feature extraction methods could minimize the process of feature extraction. In this study, two Convolutional Neural Network (CNN)-based models were proposed as deep learning methods to diagnose lung cancer on lung CT images. To investigate the performance of the two proposed models (Straight 3D-CNN with conventional softmax and hybrid 3D-CNN with Radial Basis Function (RBF)-based SVM), the altered models of two-well known CNN architectures (3D-AlexNet and 3D-GoogleNet) were considered. Experimental results showed that the performance of the two proposed models surpassed 3D-AlexNet and 3D-GoogleNet. Furthermore, the proposed hybrid 3D-CNN with SVM achieved more satisfying results (91.81%, 88.53% and 91.91% for accuracy rate, sensitivity and precision respectively) compared to straight 3D-CNN with softmax in the diagnosis of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document