scholarly journals Upper Second Molar Distalization with Clear Aligners: A Finite Element Study

2020 ◽  
Vol 10 (21) ◽  
pp. 7739
Author(s):  
Gabriele Rossini ◽  
Matteo Schiaffino ◽  
Simone Parrini ◽  
Ambra Sedran ◽  
Andrea Deregibus ◽  
...  

Among orthodontists and scientists, in the last years, upper molar distalization has been a debated topic in the orthodontic aligner field. However, despite that few clinical studies have been published, no insights on aligners’ biomechanics regarding this movement are available. The aim of this study was to assess, through finite element analysis, the force system resulting in the upper arch during second maxillary molar distalization with clear aligners and variable attachments settings. The average tooth distalization was found to be 0.029, with buccal flaring of the upper incisors in all attachment configurations. The mesial deformation of the aligner was registered to be 0.2 mm on average. Different pressure areas on the interface between aligners and upper molars were registered, with the mesial attachment surface to be directly involved when present. Periodontal ligament pressure was reported to range between 67 g/cm2 and 132 g/cm2. Configurations with rectangular attachments from second molar-to-canine and from first molar-to-canine present, in an in silico environment, almost equal efficiency in distalizing the upper second molar. However, attachments from the second molar to the canine are suggested to be adopted in clinical environments due to greater feasibility in everyday practice.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Cengiz Ayidağa ◽  
Beste Kamiloğlu

The objective of the present study is to describe the stress and displacement patterns created by clear aligners and composite attachments bonded with the acid-etch technique on the labial surface of the maxillary first upper molar during its distalization. Maxillary molar distalization is a clinical orthodontics procedure used to move the first maxillary molar distally. The procedure is useful in patients with some Class II malocclusion allowing the first molar to move into a Class I relationship and the correction of associated malocclusion features. Three finite element models were designed to simulate the alveolar bone, molar tooth, periodontal ligament, aligner, and composite attachments. The first model had no composite attachment, the second model had a vertical rectangular attachment, and the third model had a newly designed attachment. A loading method was developed that mimicked the aligner’s molar distal movement. PDL was set as a viscoelastic material with a nonlinear mechanical response. von Mises and maximum principal stresses and tooth displacement patterns were analyzed using dedicated software. All the configurations showed some form of clockwise rotation in addition to the distal movement. The crown portion of the tooth showed maximum displacement in all three models; however, in the absence of attachment, the root apex moved in the opposite direction which was compatible with uncontrolled tipping movement. Simulations with attachments exhibited the best performance regarding the movement patterns. The third group, with the newly designed attachment, exhibited the best performance concerning stress distribution (principal stress and von Mises stresses) and higher stresses in the periodontal ligament and tooth. Incorporating a vertical rectangular attachment in a clear aligner resulted in the reduction of mesiodistal tipping tendency during molar distalization. The third model was the most efficient considering both displacement pattern and stress distribution. The level of stress generated by the third model needs to be further investigated in future studies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kamontip Sujaritwanid ◽  
Boonsiva Suzuki ◽  
Eduardo Yugo Suzuki

Abstract Background The purpose of this study was to compare the stress distribution and displacement patterns of the one versus two maxillary molars distalization with iPanda and to evaluate the biomechanical effect of distalization on the iPanda using the finite element method. Methods The finite element models of a maxillary arch with complete dentition, periodontal ligament, palatal and alveolar bone, and an iPanda connected to a pair of midpalatal miniscrews were created. Two models were created to simulate maxillary molar distalization. In the first model, the iPanda was connected to the second molar to simulate a single molar distalization. In the second model, the iPanda was connected to the first molar to simulate “en-masse” first and second molar distalization. A varying force from 50 to 200 g was applied. The stress distribution and displacement patterns were analyzed. Results For one molar, the stress was concentrated at the furcation and along the distal surface in all roots with a large amount of distalization and distobuccal crown tipping. For two molars, the stress in the first molar was 10 times higher than in the second molar with a great tendency for buccal tipping and a minimal amount of distalization. Moreover, the stress concentration on the distal miniscrew was six times higher than in the mesial miniscrew with an extrusive and intrusive vector, respectively. Conclusions Individual molar distalization provides the most effective stress distribution and displacement patterns with reduced force levels. In contrast, the en-masse distalization of two molars results in increased force levels with undesirable effects in the transverse and vertical direction.


Author(s):  
Gero Stefan Michael Kinzinger ◽  
Jan Hourfar ◽  
Jörg Alexander Lisson

Abstract Purpose Conventional anchorage with exclusively intraorally anchored appliances for non-compliance molar distalization combines a palatal acrylic button with periodontal anchorage. This type of anchorage is critically discussed because of the temporary hygienic impairment of the palate and the uncertain anchoring quality of the button. A purely dentally/periodontally anchored Pendulum K appliance was developed, which is exclusively anchored via four occlusal rests. The aims of this pilot study were to examine the suitability of the skeletonized Pendulum K for distalization of maxillary molars, and to investigate the quality of this alternative anchoring modality. Patients and methods In all, 10 patients received skeletonized Pendulum K appliances attached to all maxillary premolars for bilateral molar distalization. Supporting anchorage through an acrylic button adjacent to the anterior palate was not used. The pendulum springs were initially activated on both sides with a distalization force of 220 cN each and provided with uprighting and toe-in bends. The specific force/moment system was regularly reactivated intraorally by adjustment of the distal screw. Results The study demonstrates the suitability of the skeletonized Pendulum K appliance for the distalization of maxillary molars (3.28 ± 0.73 mm). Side effects on the molars were slight distal tipping (3.50 ± 2.51°/PP, 3.00 ± 1.41°/SN) and mesial inward rotation (average 2.75 ± 7.50° and 4.50 ± 12.77°). Significant anchorage loss occurred in the form of mesialization of the incisors by 1.40 ± 0.82 mm and of the first premolars by 2.28 ± 0.85 mm. Conclusion The skeletonized Pendulum K appliance allows compliance-free upper molar distalization. Exclusively dental/periodontal anchorage resulted in a lower percentage of molar distalization compared to a conventional anchoring preparation of the Pendulum K with a palatal acrylic button. Anchorage loss had a comparatively stronger effect on the anchoring premolars but less on the incisors. Typical side effects on the molars such as distal tipping and mesial inward rotation were remarkably low.


2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


Sign in / Sign up

Export Citation Format

Share Document