scholarly journals Effects of Variable Composite Attachment Shapes in Controlling Upper Molar Distalization with Aligners: A Nonlinear Finite Element Study

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Cengiz Ayidağa ◽  
Beste Kamiloğlu

The objective of the present study is to describe the stress and displacement patterns created by clear aligners and composite attachments bonded with the acid-etch technique on the labial surface of the maxillary first upper molar during its distalization. Maxillary molar distalization is a clinical orthodontics procedure used to move the first maxillary molar distally. The procedure is useful in patients with some Class II malocclusion allowing the first molar to move into a Class I relationship and the correction of associated malocclusion features. Three finite element models were designed to simulate the alveolar bone, molar tooth, periodontal ligament, aligner, and composite attachments. The first model had no composite attachment, the second model had a vertical rectangular attachment, and the third model had a newly designed attachment. A loading method was developed that mimicked the aligner’s molar distal movement. PDL was set as a viscoelastic material with a nonlinear mechanical response. von Mises and maximum principal stresses and tooth displacement patterns were analyzed using dedicated software. All the configurations showed some form of clockwise rotation in addition to the distal movement. The crown portion of the tooth showed maximum displacement in all three models; however, in the absence of attachment, the root apex moved in the opposite direction which was compatible with uncontrolled tipping movement. Simulations with attachments exhibited the best performance regarding the movement patterns. The third group, with the newly designed attachment, exhibited the best performance concerning stress distribution (principal stress and von Mises stresses) and higher stresses in the periodontal ligament and tooth. Incorporating a vertical rectangular attachment in a clear aligner resulted in the reduction of mesiodistal tipping tendency during molar distalization. The third model was the most efficient considering both displacement pattern and stress distribution. The level of stress generated by the third model needs to be further investigated in future studies.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kamontip Sujaritwanid ◽  
Boonsiva Suzuki ◽  
Eduardo Yugo Suzuki

Abstract Background The purpose of this study was to compare the stress distribution and displacement patterns of the one versus two maxillary molars distalization with iPanda and to evaluate the biomechanical effect of distalization on the iPanda using the finite element method. Methods The finite element models of a maxillary arch with complete dentition, periodontal ligament, palatal and alveolar bone, and an iPanda connected to a pair of midpalatal miniscrews were created. Two models were created to simulate maxillary molar distalization. In the first model, the iPanda was connected to the second molar to simulate a single molar distalization. In the second model, the iPanda was connected to the first molar to simulate “en-masse” first and second molar distalization. A varying force from 50 to 200 g was applied. The stress distribution and displacement patterns were analyzed. Results For one molar, the stress was concentrated at the furcation and along the distal surface in all roots with a large amount of distalization and distobuccal crown tipping. For two molars, the stress in the first molar was 10 times higher than in the second molar with a great tendency for buccal tipping and a minimal amount of distalization. Moreover, the stress concentration on the distal miniscrew was six times higher than in the mesial miniscrew with an extrusive and intrusive vector, respectively. Conclusions Individual molar distalization provides the most effective stress distribution and displacement patterns with reduced force levels. In contrast, the en-masse distalization of two molars results in increased force levels with undesirable effects in the transverse and vertical direction.


2020 ◽  
Vol 10 (21) ◽  
pp. 7739
Author(s):  
Gabriele Rossini ◽  
Matteo Schiaffino ◽  
Simone Parrini ◽  
Ambra Sedran ◽  
Andrea Deregibus ◽  
...  

Among orthodontists and scientists, in the last years, upper molar distalization has been a debated topic in the orthodontic aligner field. However, despite that few clinical studies have been published, no insights on aligners’ biomechanics regarding this movement are available. The aim of this study was to assess, through finite element analysis, the force system resulting in the upper arch during second maxillary molar distalization with clear aligners and variable attachments settings. The average tooth distalization was found to be 0.029, with buccal flaring of the upper incisors in all attachment configurations. The mesial deformation of the aligner was registered to be 0.2 mm on average. Different pressure areas on the interface between aligners and upper molars were registered, with the mesial attachment surface to be directly involved when present. Periodontal ligament pressure was reported to range between 67 g/cm2 and 132 g/cm2. Configurations with rectangular attachments from second molar-to-canine and from first molar-to-canine present, in an in silico environment, almost equal efficiency in distalizing the upper second molar. However, attachments from the second molar to the canine are suggested to be adopted in clinical environments due to greater feasibility in everyday practice.


2021 ◽  
Author(s):  
Hossein Jokar ◽  
Gholamreza Rouhi ◽  
Nabiollah Abolfathi

Abstract PURPOSE. Function of periodontal ligament-cementum enthesis (PCE) in transferring mechanical stimuli within tooth-periodontium (PDT)-bone complex was not made clear yet. This study aimed to evaluate the effects of PCE on the mechanical stimuli distribution within the PDL and alveolar bone in the tooth-PDT-bone complex under occlusal forces using finite element method (FEM). METHODS. A computed tomography (CT) based model of alveolar bone and 2nd premolar of mandible was constructed, in which the PDT was considered at the interface of alveolar bone and tooth. Under a 3MPa distributed occluso-apical masticatory load, applied over the uppermost surface of crown, the von Mises strain (vMST) and strain energy density (SED) within PDL, and von Mises stress (vMSR) and SED within alveolar bone were calculated in two situations: 1. When the PCE was absent; and 2. When the PCE was present between the PDL and cementum. RESULTS. PCE levels-off the SED and vMST within PDL by maximum values of 92 kPa and 0.04 mm/mm, respectively, compared to the model without PCE. Moreover, it increased the alveolar bone SEDs and vMSR by maximum values of 0.36 kPa and 0.63 MPa, respectively, compared to the without PCE model.CONCLUSION. By including PCE in the tooth-PDT-bone model, the mechanical stimuli shift from PDL to its surrounding alveolar bone. Thus, it can be speculated that the tooth-PDT-bone complex has the capability of, through shifting excess mechanical stimuli from PDL toward the alveolar bone, reducing the risk of PDL damage.


Author(s):  
Gero Stefan Michael Kinzinger ◽  
Jan Hourfar ◽  
Jörg Alexander Lisson

Abstract Purpose Conventional anchorage with exclusively intraorally anchored appliances for non-compliance molar distalization combines a palatal acrylic button with periodontal anchorage. This type of anchorage is critically discussed because of the temporary hygienic impairment of the palate and the uncertain anchoring quality of the button. A purely dentally/periodontally anchored Pendulum K appliance was developed, which is exclusively anchored via four occlusal rests. The aims of this pilot study were to examine the suitability of the skeletonized Pendulum K for distalization of maxillary molars, and to investigate the quality of this alternative anchoring modality. Patients and methods In all, 10 patients received skeletonized Pendulum K appliances attached to all maxillary premolars for bilateral molar distalization. Supporting anchorage through an acrylic button adjacent to the anterior palate was not used. The pendulum springs were initially activated on both sides with a distalization force of 220 cN each and provided with uprighting and toe-in bends. The specific force/moment system was regularly reactivated intraorally by adjustment of the distal screw. Results The study demonstrates the suitability of the skeletonized Pendulum K appliance for the distalization of maxillary molars (3.28 ± 0.73 mm). Side effects on the molars were slight distal tipping (3.50 ± 2.51°/PP, 3.00 ± 1.41°/SN) and mesial inward rotation (average 2.75 ± 7.50° and 4.50 ± 12.77°). Significant anchorage loss occurred in the form of mesialization of the incisors by 1.40 ± 0.82 mm and of the first premolars by 2.28 ± 0.85 mm. Conclusion The skeletonized Pendulum K appliance allows compliance-free upper molar distalization. Exclusively dental/periodontal anchorage resulted in a lower percentage of molar distalization compared to a conventional anchoring preparation of the Pendulum K with a palatal acrylic button. Anchorage loss had a comparatively stronger effect on the anchoring premolars but less on the incisors. Typical side effects on the molars such as distal tipping and mesial inward rotation were remarkably low.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Preeti Satheesh Kumar ◽  
Kumar K. S. Satheesh ◽  
Jins John ◽  
Geetha Patil ◽  
Ruchi Patel

Background and Objectives. A key factor for the long-term function of a dental implant is the manner in which stresses are transferred to the surrounding bone. The effect of adding a stiffener to the tissue side of the Hader bar helps to reduce the transmission of the stresses to the alveolar bone. But the ideal thickness of the stiffener to be attached to the bar is a subject of much debate. This study aims to analyze the force transfer and stress distribution of an implant-supported overdenture with a Hader bar attachment. The stiffener of the bar attachments was varied and the stress distribution to the bone around the implant was studied. Methods. A CT scan of edentulous mandible was used and three models with 1, 2, and 3 mm thick stiffeners were created and subjected to loads of emulating the masticatory forces. These different models were analyzed by the Finite Element Software (Ansys, Version 8.0) using von Mises stress analysis. Results. The results showed that the maximum stress concentration was seen in the neck of the implant for models A and B. In model C the maximum stress concentration was in the bar attachment making it the model with the best stress distribution, as far as implant failures are concerned. Conclusion. The implant with Hader bar attachment with a 3 mm stiffener is the best in terms of stress distribution, where the stress is concentrated at the bar and stiffener regions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1708 ◽  
Author(s):  
Maciej Zarow ◽  
Mirco Vadini ◽  
Agnieszka Chojnacka-Brozek ◽  
Katarzyna Szczeklik ◽  
Grzegorz Milewski ◽  
...  

By means of a finite element method (FEM), the present study evaluated the effect of fiber post (FP) placement on the stress distribution occurring in endodontically treated upper first premolars (UFPs) with mesial–occlusal–distal (MOD) nanohybrid composite restorations under subcritical static load. FEM models were created to simulate four different clinical situations involving endodontically treated UFPs with MOD cavities restored with one of the following: composite resin; composite and one FP in the palatal root; composite and one FP in the buccal root; or composite and two FPs. As control, the model of an intact UFP was included. A simulated load of 150 N was applied. Stress distribution was observed on each model surface, on the mid buccal–palatal plane, and on two horizontal planes (at cervical and root-furcation levels); the maximum Von Mises stress values were calculated. All analyses were replicated three times, using the mechanical parameters from three different nanohybrid resin composite restorative materials. In the presence of FPs, the maximum stress values recorded on dentin (in cervical and root-furcation areas) appeared slightly reduced, compared to the endodontically treated tooth restored with no post; in the same areas, the overall Von Mises maps revealed more favorable stress distributions. FPs in maxillary premolars with MOD cavities can lead to a positive redistribution of potentially dangerous stress concentrations away from the cervical and the root-furcation dentin.


Paleobiology ◽  
2019 ◽  
Vol 45 (1) ◽  
pp. 182-200 ◽  
Author(s):  
François Clarac ◽  
Florent Goussard ◽  
Vivian de Buffrénil ◽  
Vittorio Sansalone

AbstractThis paper aims at assessing the influence of the bone ornamentation and, specifically, the associated loss of bone mass on the mechanical response of the crocodylomorph osteoderms. To this end, we have performed three-dimensional (3D) modeling and a finite element analysis on a sample that includes both extant dry bones and well-preserved fossils tracing back to the Late Triassic. We simulated an external attack under various angles on the apical surface of each osteoderm and further repeated the simulation on an equivalent set of smoothed 3D-modeled osteoderms. The comparative results indicated that the presence of an apical sculpture has no significant influence on the von Mises stress distribution in the osteoderm volume, although it produces a slight increase in its numerical score. Moreover, performing parametric analyses, we showed that the Young's modulus of the osteoderm, which may vary depending on the bone porosity, the collagen fiber orientation, or the calcification density, has no impact on the von Mises stress distribution inside the osteoderm volume. As the crocodylomorph bone ornamentation is continuously remodeled by pit resorption and secondary bone deposition, we assume that the apical sculpture may be the outcome of a trade-off between the bone mechanical resistance and the involvement in physiological functions. These physiological functions are indeed based on the setup of a bone superficial vessel network and/or the recurrent release of mineral elements into the plasma: heat transfers during basking and respiratory acidosis buffering during prolonged apnea in neosuchians and teleosaurids; compensatory homeostasis in response to general calcium deficiencies. On a general morphological basis, the osteoderm geometric variability within our sample leads us to assess that the global osteoderm geometry (whether square or rectangular) does not influence the von Mises stress, whereas the presence of a dorsal keel would somewhat reduce the stress along the vertical axis.


2013 ◽  
Vol 07 (04) ◽  
pp. 484-491 ◽  
Author(s):  
Wagner Moreira ◽  
Caio Hermann ◽  
Jucélio Tomás Pereira ◽  
Jean Anacleto Balbinoti ◽  
Rodrigo Tiossi

ABSTRACT Objective: The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Materials and Methods: Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). Results: The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Conclusions: Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.


Sign in / Sign up

Export Citation Format

Share Document