scholarly journals Classification of Similar Sports Images Using Convolutional Neural Network with Hyper-Parameter Optimization

2020 ◽  
Vol 10 (23) ◽  
pp. 8494
Author(s):  
Vili Podgorelec ◽  
Špela Pečnik ◽  
Grega Vrbančič

With the exponential growth of the presence of sport in the media, the need for effective classification of sports images has become crucial. The traditional approaches require carefully hand-crafted features, which make them impractical for massive-scale data and less accurate in distinguishing images that are very similar in appearance. As the deep learning methods can automatically extract deep representation of training data and have achieved impressive performance in image classification, our goal was to apply them to automatic classification of very similar sports disciplines. For this purpose, we developed a CNN-TL-DE method for image classification using the fine-tuning of transfer learning for training a convolutional neural network model with the use of hyper-parameter optimization based on differential evolution. Through the automatic optimization of neural network topology and essential training parameters, we significantly improved the classification performance evaluated on a dataset composed from images of four similar sports—American football, rugby, soccer, and field hockey. The analysis of interpretable representation of the trained model additionally revealed interesting insights into how our model perceives images which contributed to a greater confidence in the model prediction. The performed experiments showed our proposed method to be a very competitive image classification method for distinguishing very similar sports and sport situations.

2021 ◽  
Author(s):  
Wenjie Cao ◽  
Cheng Zhang ◽  
Zhenzhen Xiong ◽  
Ting Wang ◽  
Junchao Chen ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Shuai Zhang ◽  
Yong Chen ◽  
Xiaoling Huang ◽  
Yishuai Cai

Online feedback is an effective way of communication between government departments and citizens. However, the daily high number of public feedbacks has increased the burden on government administrators. The deep learning method is good at automatically analyzing and extracting deep features of data, and then improving the accuracy of classification prediction. In this study, we aim to use the text classification model to achieve the automatic classification of public feedbacks to reduce the work pressure of administrator. In particular, a convolutional neural network model combined with word embedding and optimized by differential evolution algorithm is adopted. At the same time, we compared it with seven common text classification models, and the results show that the model we explored has good classification performance under different evaluation metrics, including accuracy, precision, recall, and F1-score.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qiang Cai ◽  
Fenghai Li ◽  
Yifan Chen ◽  
Haisheng Li ◽  
Jian Cao ◽  
...  

Along with the strong representation of the convolutional neural network (CNN), image classification tasks have achieved considerable progress. However, majority of works focus on designing complicated and redundant architectures for extracting informative features to improve classification performance. In this study, we concentrate on rectifying the incomplete outputs of CNN. To be concrete, we propose an innovative image classification method based on Label Rectification Learning (LRL) through kernel extreme learning machine (KELM). It mainly consists of two steps: (1) preclassification, extracting incomplete labels through a pretrained CNN, and (2) label rectification, rectifying the generated incomplete labels by the KELM to obtain the rectified labels. Experiments conducted on publicly available datasets demonstrate the effectiveness of our method. Notably, our method is extensible which can be easily integrated with off-the-shelf networks for improving performance.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2019 ◽  
Vol 56 (22) ◽  
pp. 221001
Author(s):  
王燕妮 Wang Yanni ◽  
朱丹娜 Zhu Danna ◽  
王慧琴 Wang Huiqin ◽  
王可 Wang Ke

2020 ◽  
Vol 17 (2) ◽  
pp. 445-458
Author(s):  
Yonghui Dai ◽  
Bo Xu ◽  
Siyu Yan ◽  
Jing Xu

Cardiovascular disease is one of the diseases threatening the human health, and its diagnosis has always been a research hotspot in the medical field. In particular, the diagnosis technology based on ECG (electrocardiogram) signal as an effective method for studying cardiovascular diseases has attracted many scholars? attention. In this paper, Convolutional Neural Network (CNN) is used to study the feature classification of three kinds of ECG signals, which including sinus rhythm (SR), Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF). Specifically, different convolution layer structures and different time intervals are used for ECG signal classification, such as the division of 2-layer and 4-layer convolution layers, the setting of four time periods (1s, 2s, 3s, 10s), etc. by performing the above classification conditions, the best classification results are obtained. The contribution of this paper is mainly in two aspects. On the one hand, the convolution neural network is used to classify the arrhythmia data, and different classification effects are obtained by setting different convolution layers. On the other hand, according to the data characteristics of three kinds of ECG signals, different time periods are designed to optimize the classification performance. The research results provide a reference for the classification of ECG signals and contribute to the research of cardiovascular diseases.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Nardianti Dewi Girsang

Batik is a hereditary cultural heritage that has high aesthetic value and deep philosophy. Currently, Indonesian batik has various types of different motifs and patterns, which are spread in Indonesia with their names and meanings. Batik classification uses Convolutional Neural Network as a pattern recognition method, especially batik image classification. The method used is a literature study, looking at studies from several journals regarding the Convolutional Neural Network Algorithm in Classification and providing conclusions about the usefulness of the algorithm. Analysis This literature study analyzes each journal from previous research related to the Convolutional Neural Network Algorithm in classifying Batik. The results of the analysis, conducted a discussion to better know the characteristics and application of Convolutional Neural Network in the classification of Batik. After discussing, this analysis ends with conclusions about the Convolutional Neural Network algorithm in classifying Batik. Based on previous studies, it can be seen that the convolution neural network can work well for image classification with large datasets. By evaluating the method that has been described by considering the architecture and the level of accuracy, namely getting an accuracy level of 100% with an image size of 128 x 128 and regarding the classification of batik, it shows that image size, image quality, image patterns affect the batik classification process.


2021 ◽  
Vol 11 (22) ◽  
pp. 10558
Author(s):  
Nguyen Minh Trieu ◽  
Nguyen Truong Thinh

Currently, most agricultural products in developing countries are exported to many countries around the world. Therefore, the classification of these products according to different standards is necessary. In Vietnam, dragon fruit is considered as the fruit with the highest export rate. Currently, the classification of dragon fruit is carried manually, lead to low-quality classification high labor costs. Therefore, this study describes an automatic dragon fruit classifying system using non-destructive measurements, based on a convolutional neural network (CNN). This classifying system uses a combination of a model of machine learning and image processing using a convolutional neural network to identify the external features of dragon fruits; the fruits are then classified and evaluated by groups. The dragon fruit is recognized by the system, which extracts the objects combined with the signal obtained from the loadcell to calculate and determine dragon fruit in each group. The training data are collected from the dragon fruit processing system, with a dataset of images obtained from more than 1287 dragon fruits, to train the model. In this system, the classification of the processing speed and accuracy are the two most important factors. The results show that the classification system achieves high efficiency. The system is effective with existing dragon fruit types. In Vietnamese factories, the processing speed of the system increases the sorting capacity of export packing facilities to six times higher than that of the manual method, with an accuracy of more than 96%.


Sign in / Sign up

Export Citation Format

Share Document