scholarly journals Advanced Micro-Actuator/Robot Fabrication Using Ultrafast Laser Direct Writing and Its Remote Control

2020 ◽  
Vol 10 (23) ◽  
pp. 8563
Author(s):  
Sangmo Koo

Two-photon polymerization (TPP) based on the femtosecond laser (fs laser) direct writing technique in the realization of high-resolution three-dimensional (3D) shapes is spotlighted as a unique and promising processing technique. It is also interesting that TPP can be applied to various applications in not only optics, chemistry, physics, biomedical engineering, and microfluidics but also micro-robotics systems. Effort has been made to design innovative microscale actuators, and research on how to remotely manipulate actuators is also constantly being conducted. Various manipulation methods have been devised including the magnetic, optical, and acoustic control of microscale actuators, demonstrating the great potential for non-contact and non-invasive control. However, research related to the precise control of microscale actuators is still in the early stages, and in-depth research is needed for the efficient control and diversification of a range of applications. In the future, the combination of the fs laser-based fabrication technique for the precise fabrication of microscale actuators/robots and their manipulation can be established as a next-generation processing method by presenting the possibility of applications to various areas.

2017 ◽  
Vol 5 (14) ◽  
pp. 3579-3584 ◽  
Author(s):  
Oriana I. Avila ◽  
Juliana M. P. Almeida ◽  
Franciele R. Henrique ◽  
Ruben D. Fonseca ◽  
Gustavo F. B. Almeida ◽  
...  

Conversion of PTHT into PPV is achieved by direct laser writing. Fs-laser pulses induce photo-thermal reactions due to two-photon absorption, resulting in the microscopic control of PPV polymerization. Such methodology is a promising way towards the fabrication of arbitrary polymeric microcircuits.


2013 ◽  
Vol 1499 ◽  
Author(s):  
Wei Xiong ◽  
Yunshen Zhou ◽  
Xiangnan He ◽  
Yang Gao ◽  
Masoud Mahjouri-Samani ◽  
...  

ABSTRACTAdditive nanofabrication by two-photon polymerization (TPP) has recently drawn increased attention due to its sub-100 nm resolution and truly three-dimensional (3D) structuring capability. However, besides additive processes, subtractive process is also demanded for many 3D fabrications. Method possessing both additive and subtractive fabrication capabilities was rarely reported. In this study, we developed a complementary 3D micro/nano-fabrication process by integrating both additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) into a single platform of femtosecond-laser direct writing process. Functional device structures were successfully fabricated including: polymer fiber Bragg gratings containing periodic holes of 500-nm diameter and 3D micro-fluidic systems containing arrays of channels of 1-µm diameter. The integration of TPP and MPA processes enhances the nanofabrication efficiency and enables the fabrication of complex 3D micro/nano-structures that are impractical to produce by either TPP or MPA alone, which is promising for a wide range of applications including integrated optics, metamaterials, MEMS, and micro-fluidics.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 112 ◽  
Author(s):  
Linyu Yan ◽  
Dong Yang ◽  
Qihuang Gong ◽  
Yan Li

Femtosecond laser direct writing through two-photon polymerization has been widely used in precision fabrication of three-dimensional microstructures but is usually time consuming. In this article, we report the rapid fabrication of continuous surface Fresnel lens array through femtosecond laser three-dimensional focal field engineering. Each Fresnel lens is formed by continuous two-photon polymerization of the two-dimensional slices of the whole structure with one-dimensional scan of the corresponding two-dimensional engineered intensity distribution. Moreover, we anneal the lens array to improve its focusing and imaging performance.


2020 ◽  
Vol 6 (5) ◽  
pp. eaay5853 ◽  
Author(s):  
Xiao-Yun Xu ◽  
Xuan-Lun Huang ◽  
Zhan-Ming Li ◽  
Jun Gao ◽  
Zhi-Qiang Jiao ◽  
...  

The subset sum problem (SSP) is a typical nondeterministic-polynomial-time (NP)–complete problem that is hard to solve efficiently in time with conventional computers. Photons have the unique features of high propagation speed, strong robustness, and low detectable energy level and therefore can be promising candidates to meet the challenge. Here, we present a scalable chip built-in photonic computer to efficiently solve the SSP. We map the problem into a three-dimensional waveguide network through a femtosecond laser direct writing technique. We show that the photons sufficiently dissipate into the networks and search for solutions in parallel. In the case of successive primes, our approach exhibits a dominant superiority in time consumption even compared with supercomputers. Our results confirm the ability of light to realize computations intractable for conventional computers, and suggest the SSP as a good benchmarking platform for the race between photonic and conventional computers on the way toward “photonic supremacy.”


2017 ◽  
Vol 11 (6) ◽  
pp. 878-882 ◽  
Author(s):  
Takuma Niioka ◽  
◽  
Yasutaka Hanada

Recently, a lot of attention has been paid to a single-cell analysis using microfluidic chips, since each cell is known to have several different characteristics. The microfluidic chip manipulates cells and performs high-speed and high-resolution analysis. In the meanwhile, femtosecond (fs) laser has become a versatile tool for the fabrication of microfluidic chips because the laser can modify internal volume solely at the focal area, resulting in three-dimensional (3D) microfabrication of glass materials. However, little research on surface microfabrication of materials using an fs laser has been conducted. Therefore, in this study, we demonstrate the surface microfabrication of a conventional glass slide using fs laser direct-writing for microfluidic applications. The fs laser modification, with successive wet etching using a diluted hydrofluoric (HF) acid solution, followed by annealing, results in rapid prototyping of microfluidics on a conventional glass slide for fluorescent microscopic cell analysis. Fundamental characteristics of the laser-irradiated regions in each experimental procedure were investigated. In addition, we developed a novel technique combining the fs laser direct-writing and the HF etching for high-speed and high-resolution microfabrication of the glass. After establishing the fs laser surface microfabrication technique, a 3D microfluidic chip was made by bonding the fabricated glass microfluidic chip with a polydimethylsiloxane (PDMS) polymer substrate for clear fluorescent microscopic observation in the microfluidics.


Sign in / Sign up

Export Citation Format

Share Document