scholarly journals Evaluation of the Biomechanical Parameters of Human-Wheelchair Systems during Ramp Climbing with the Use of a Manual Wheelchair with Anti-Rollback Devices

2020 ◽  
Vol 10 (23) ◽  
pp. 8757
Author(s):  
Bartosz Wieczorek ◽  
Mateusz Kukla ◽  
Dominik Rybarczyk ◽  
Łukasz Warguła

Purpose: The main purpose of the research conducted was the analysis of kinematic and biomechanical parameters measured during manual wheelchair ramp-climbing with the use of the anti-rollback system and the comparison of the values tested with the manual wheelchair climbing the same ramp but without any modifications. The paper presents a quantitative assessment relating to the qualitative research of the anti-rollback system performed by another research team. Method and materials: The article presents the measurement results of the wheelchair motion kinematics and the activity of four upper limb muscles for eight subjects climbing a 4.58° ramp. Each subject propelled the wheelchair both with and without the anti-rollback system. The kinematic parameters were measured by means of two incremental encoders with the resolution of 500 impulses per single revolution of the measurement wheel. Whereas, the muscle activity was measured by means of surface electromyography with the use of Noraxon Mini DTS apparatus equipped with four measurement channels. Results: The surface electromyography measurement indicated an increase in the muscle activity for all four muscles, during the use of the anti-rollback system. The increase was: 18.56% for deltoid muscle anterior, 12.37% for deltoid muscle posteriori, 13.0% for triceps brachii, and 15.44% for extensor carpi radialis longus. As far as the kinematics analysis is concerned, a decrease in the measured kinematic parameters was observed in most participants. The medium velocity of the propelling cycle decreased by 26%. The ratio of the generated power and the loss power in a single propelling cycle λ had decreased by 18%. The least decrease was recorded for the measurement of mechanical energy E and the propelling cycle duration time. For the total mechanical energy, the decrease level was 3%, and for the propelling cycle duration it was 1%. The research carried out did not demonstrate any impact of the anti-rollback system use on the push phase share in the entire propelling cycle.

2019 ◽  
Vol 40 (09) ◽  
pp. 569-575
Author(s):  
Il-Young Yu ◽  
Se-Il Oh ◽  
Won-Jeong Jung ◽  
Jaeseop Oh

AbstractWe investigated the muscle activities of the infraspinatus and posterior deltoid, as well as the ratio of the infraspinatus to posterior deltoid muscle activities, in response to 3 resistance intensities during prone external rotation (PER) and sitting external rotation (SITER) exercises. Fifteen healthy males participated; the subjects performed two exercises randomly at three resistance intensity levels: 1) low intensity (10–20%); 2) medium intensity (45–55%); 3) high intensity (60–70%). Surface electromyography was used to measure the activities of the infraspinatus and posterior deltoid muscles. The activities of the infraspinatus and posterior deltoid increased significantly as the resistance intensity increased during both PER and SITER exercises (p<0.001). The infraspinatus-to-posterior deltoid activity ratio increased as the resistance intensity decreased. Whereas the muscle activity ratio was highest under low and medium intensity during PER and SITER, respectively, and the muscle activity ratio was significantly increased at medium intensity compared with high intensity during both PER (p=0.023) and SITER (p=0.001). Our results suggest that low to medium intensity is the appropriate resistance intensity for selective activation of the infraspinatus. In addition, our results suggest that PER and SITER are effective for strengthening the infraspinatus.


2021 ◽  
Vol 4 (2) ◽  
pp. 32
Author(s):  
Heather A. Feldner ◽  
Christina Papazian ◽  
Keshia M. Peters ◽  
Claire J. Creutzfeldt ◽  
Katherine M. Steele

Arm recovery varies greatly among stroke survivors. Wearable surface electromyography (sEMG) sensors have been used to track recovery in research; however, sEMG is rarely used within acute and subacute clinical settings. The purpose of this case study was to describe the use of wireless sEMG sensors to examine changes in muscle activity during acute and subacute phases of stroke recovery, and understand the participant’s perceptions of sEMG monitoring. Beginning three days post-stroke, one stroke survivor wore five wireless sEMG sensors on his involved arm for three to four hours, every one to three days. Muscle activity was tracked during routine care in the acute setting through discharge from inpatient rehabilitation. Three- and eight-month follow-up sessions were completed in the community. Activity logs were completed each session, and a semi-structured interview occurred at the final session. The longitudinal monitoring of muscle and movement recovery in the clinic and community was feasible using sEMG sensors. The participant and medical team felt monitoring was unobtrusive, interesting, and motivating for recovery, but desired greater in-session feedback to inform rehabilitation. While barriers in equipment and signal quality still exist, capitalizing on wearable sensing technology in the clinic holds promise for enabling personalized stroke recovery.


2014 ◽  
Vol 564 ◽  
pp. 644-649 ◽  
Author(s):  
Halim Isa ◽  
Rawaida ◽  
Seri Rahayu Kamat ◽  
A. Rohana ◽  
Adi Saptari ◽  
...  

In industries, manual lifting is commonly practiced even though mechanized material handling equipment are provided. Manual lifting is used to transport or move products and goods to a desired place.Improper lifting techniquescontribute to muscle fatigue and low back pain that can lead to work efficiency and low productivity.The objective of this study were to analyze muscle activity in the left and right Erector Spinae, and left and right Biceps Brachii of five female subjects while performing manual lifting taskwithdifferent load mass, lifting height and twist angle.The muscle activitywere measured and analyzed using surface electromyography (sEMG).This study found that the right Biceps Brachii, right and left Erector Spinae experienced fatigue while performingasymmetric lifting (twist angle = 90°) at lifting height of 75 cm and 140 cm with load mass of 5 kg and 10 kg. Meanwhile, the left Biceps Brachii experienced fatigue when the lifting task was set at lifting height of 75 cm, load mass of 5 kg and twist angle of 90°.The load mass and lifting height has a significant influence to Mean Power Frequency (MPF) for left Biceps Brachii, left and right Erector Spinae. This study concluded that reducing the load mass can increase the muscles performance which can extend the transition-to-fatigue stage in the left and right Biceps Brachii and Erector Spinae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Fumery ◽  
Nicolas A. Turpin ◽  
Laetitia Claverie ◽  
Vincent Fourcassié ◽  
Pierre Moretto

AbstractThe biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.


1996 ◽  
Vol 75 (4) ◽  
pp. 1472-1482 ◽  
Author(s):  
O. Kiehn ◽  
O. Kjaerulff

1. Rhythmic activity was induced with either serotonin (5-HT; 10-100 microM) or dopamine (0.1-1.0 mM), in the in vitro spinal cord preparation of neonatal rats, with one intact hindlimb attached. Patterns of activity were investigated with multiple EMG recordings and the spatiotemporal characteristics of 5-HT- and dopamine-induced activity compared. 2. Dopamine-induced rhythmic activity was slow (cycle duration: 2.2-70.1 s) and irregular, whereas rhythmic activity induced by 5-HT was fast (cycle duration: 1.3-5.1 s) and regular. 3. During 5-HT- and dopamine-induced rhythmic activity, the timing of muscular activity was similar for hip flexors and hip adductors, for semimembranosus (hip extensor), and for muscles controlling the ankle and the foot. 4. In contrast, notable differences in the phase in the pattern induced by 5-HT compared with that induced by dopamine were found in the biceps femoris, semitendinosus, and quadriceps muscles. Biceps femoris and semitendinosus (functional hip extensors and knee flexors) were always extensor-like during 5-HT-induced activity, whereas in dopamine, these muscles displayed flexor-like bursts and double bursts as well as extensor-like bursts. Lack of EMG activity in biceps femoris and semitendinosus was encountered also in dopamine. In rectus femoris, vastus lateralis, and vastus medialis (main function: knee extension), the activity was dominated by flexor-like bursts in 5-HT, whereas in dopamine the activity was shifted to a predominantly extensor-like pattern. 5. The relationship between flexor and extensor burst duration and cycle duration was more variable than described for locomotor activity in adult animals. 6. The relative timing of muscle activity was stable from P0 to P4. The most important difference between rats aged 0-1 days and rats aged 2-4 days was a delayed flexor-extensor transition in older animals. 7. The complex timing of hindlimb muscle activity was relatively unchanged after transecting all dorsal roots. 8. Finally, the relationship between flexor and extensor activity and ventral root discharges was determined. It was found that the L2 ventral root burst was in phase with simple flexors while the L5 burst coincide with the extensor phase. 9. We conclude, that 5-HT and dopamine can activate spinal central pattern generators (CPGs) that already at birth are able to produce distinct patterns of motor activity. Modulatory inputs thus seems to be able to reconfigure the CPGs to produce specific motor outputs.


Sign in / Sign up

Export Citation Format

Share Document