scholarly journals Design of Three-Phase V-Shaped Interior Permanent Magnet Synchronous Motor for Air Conditioning Compressor of Electric Vehicle

2020 ◽  
Vol 10 (24) ◽  
pp. 8785
Author(s):  
Hojin Jeong ◽  
Jeihoon Baek

Air conditioning system of electric vehicles has new change as the internal combustion engine is being replaced with electrified AC motor. With large amount of batteries installed at the bottom of frame, the conventional compressor, which is belt-driven, can be removed, and another AC motor can play the role for air conditioning in electric vehicles. From this change, the system efficiency would be improved since it is possible to control the electrified compressor independently from traction system in contrast with the belt-driven compressor. As a result, by applying the electrified compressor for air conditioning system, the whole system can achieve better efficiency and longer driving distance, which is most important in electric vehicles. In this paper, 3-phase interior permanent magnet synchronous motor (IPMSM) was designed using lumped-parameter model and finite element method.

Author(s):  
Hojin Jeong ◽  
Namhun Kim ◽  
Jeihoon Baek

Air conditioning system of electric vehicles has new change as the internal combustion engine is being replaced with electrified AC motor. With large amount of batteries installed at the bottom of frame, the conventional compressor which is belt-driven can be removed and another AC motor can play the role for air conditioning in electric vehicles. From this change, the system efficiency would be improved since it is possible to control the electrified compressor independently from traction system in contrast with the belt-driven compressor. As a result, by applying the electrified compressor for air conditioning system, the whole system can achieve better efficiency and longer driving distance, which is most important in electric vehicles. In this paper, 3-phase interior permanent magnet synchronous motor (IPMSM) was designed using lumped-parameter model and finite element method.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401770435 ◽  
Author(s):  
Bin Liu ◽  
Yue Zhao ◽  
Hui-Zhong Hu

A kind of flux-weakening control method based on speed loop structure-variable sliding mode controller is proposed for interior permanent magnet synchronous motor in electric vehicles. The method combines maximum torque per ampere with vector control strategy to control electric vehicle’s interior permanent magnet synchronous motor. During the flux-weakening control phase, the anti-windup integral controller is introduced into the current loop to prevent the current regulator from entering the saturated state. At the same time, in order to further improve the utilization rate of the direct current bus voltage and expand the flux-weakening regulating range, a space vector pulse-width modulation over-modulation unit is employed to contravariant the direct current bus voltage. Comparing with the conventional proportional–integral controller, the proposed sliding mode control algorithm shows that it has more reliable control performance. In addition, more prominent flux-weakening performance of the proposed flux-weakening method is illustrated by numerical simulation comparison.


Author(s):  
Hanaa Elsherbiny ◽  
Mohamed Kamal Ahmed ◽  
Mahmoud Elwany

This paper presents a detailed analysis and comparative investigation for the torque control techniques of interior permanent magnet synchronous motor (IPMSM) for electric vehicles (EVs). The study involves the field-oriented control (FOC), direct torque control (DTC), and model predictive direct torque control (MPDTC) techniques. The control aims to achieve vehicle requirements that involve maximum torque per ampere (MTPA), minimum torque ripples, maximum efficiency, fast dynamics, and wide speed range. The MTPA is achieved by the direct calculation of reference flux-linkage as a function of commanded torque. The calculation of reference flux-linkage is done online by the solution of a quartic equation. Therefore, it is a more practical solution compared to look-up table methods that depend on machine parameters and require extensive offline calculations in advance. For realistic results, the IPMSM model is built considering iron losses. Besides, the IGBTs and diodes losses (conduction and switching losses) in power inverter are modeled and calculated to estimate properly total system efficiency. In addition, a bidirectional dc-dc boost converter is connected to the battery to improve the overall drive performance and achieve higher efficiency values. Also, instead of the conventional PI controller which suffers from parameter variation, the control scheme includes an adaptive fuzzy logic controller (FLC) to provide better speed tracking performance. It also provides a better robustness against disturbance and uncertainties. Finally, a series of simulation results with detailed analysis are executed for a 60 kW IPMSM. The electric vehicle (EV) parameters are equivalent to Nissan Leaf 2018 electric car.


Sign in / Sign up

Export Citation Format

Share Document