scholarly journals Modeling and Speed Tuning of a PMSM with Presence of Fissure Using Dragonfly Algorithm

2020 ◽  
Vol 10 (24) ◽  
pp. 8823
Author(s):  
Omar Aguilar-Mejía ◽  
Abraham Manilla-García ◽  
Ivan Rivas-Cambero ◽  
Hertwin Minor-Popocatl

This paper presents a robust trajectory tracking control for a Permanent Magnet Synchronous Motor (PMSM) with consideration a fault, parametric uncertainties and external disturbances by effectively integrating robust optimal linear quadratic control. One kind of fault is considered in the machine, particularly the presence of fissure rotor. The dynamic model of the PMSM with the presence of fissure presents highly non-linear behaviors, which means that tuning is quite complicated, which the tuning was chosen through swarm intelligence optimization (Dragonfly Algorithm). A sensitivity analysis is carried out, in order to limit the search range to minimize the evaluation time. This methodology was used to diminish these defects during motor operation. Simulation results show that the optimal linear quadratic control method has a robust fault-tolerant performance.

2016 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Adel Obed ◽  
Ali Abdulabbas ◽  
Ahmed Chasib

The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.


2018 ◽  
Vol 14 (6) ◽  
pp. 155014771877956
Author(s):  
Zhuwei Wang ◽  
Lihan Liu ◽  
Chao Fang ◽  
Xiaodong Wang ◽  
Pengbo Si ◽  
...  

In this article, the optimal linear quadratic control problem is considered for the wireless sensor and actuator network with stochastic network-induced delays and packet dropouts. Considering the event-driven relay nodes, the optimal solution is obtained, which is a function of the current plant state and all past control signals. It is shown that the optimal control law is the same for all locations of the controller placement. Since the perfect plant state information is available at the sensor, the optimal controller should be collocated with the sensor. In addition, some issues such as the plant state noise and suboptimal solution are also discussed. The performance of the proposed scheme is investigated by an application of the load frequency control system in power grid.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7839
Author(s):  
Haoxuan Yu ◽  
Chenxi Zhao ◽  
Shuai Li ◽  
Zijian Wang ◽  
Yulin Zhang

With the depletion of surface resources, mining will develop toward the deep surface in the future, the objective conditions such as the mining environment will be more complex and dangerous than now, and the requirements for personnel and equipment will be higher and higher. The efficient mining of deep space is inseparable from movable and flexible production and transportation equipment such as scrapers. In the new era, intelligence is leading to the development trend of scraper (LHD), path tracking control is the key to the intelligent scraper (LHD), and it is also an urgent problem to be solved for unmanned driving. This paper describes the realization of the automatic operation of articulating the scraper (LHD) from two aspects, a mathematical model and trajectory tracking control method, and it focuses on the research of the path tracking control scheme in the field of unmanned driving, that is, an LQR controller. On this basis, combined with different intelligent clustering algorithms, the parameters of the LQR controller are optimized to find the optimal solution of the LQR controller. Then, the path tracking control of an intelligent LHD unmanned driving technology is studied, focusing on the optimization of linear quadratic optimal control (LQR) and the intelligent cluster algorithms AGA, QPSO, and ACA; this research has great significance for the development of the intelligent scraper (LHD). As mining engineers, we not only need to conduct research for practical engineering projects but also need to produce theoretical designs for advanced mining technology; therefore, the area of intelligent mining is the one we need to explore at present and in the future. Finally, this paper serves as a guide to starting a conversation, and it has implications for the development and the future of underground transportation.


2016 ◽  
Vol 90 (10) ◽  
pp. 2152-2164 ◽  
Author(s):  
I. Aksikas ◽  
A. Alizadeh Moghadam ◽  
J. F. Forbes

2014 ◽  
Vol 1016 ◽  
pp. 671-677
Author(s):  
Saif H. Almutairi ◽  
Nabil Aouf

In this paper, a Fault-Tolerant Control strategy (FTC) was applied using a linear dynamical model of a business jet aircraft subjected to actuation faults. As a baseline controller, an optimal linear quadratic tracker was designed to control some selected aircraft motion variables. Faults due to the loss of effectiveness were assumed. Then, the FTC was built upon a compensation of faults into the dynamical equations. The complete system was tested using nonlinear simulations of the aircraft dynamics. The results demonstrate the ability of the FTC strategy to maintain the stability of the system and to improve the tracking performance for a large scope of faults.


2012 ◽  
Vol 184-185 ◽  
pp. 1599-1602
Author(s):  
Bo Hao ◽  
Fan Li ◽  
Jian Hui Zhao

To achieve cruise missile accurate trajectory tracking control, an observer-based tracking control method is designed. An observer is developed to estimate the states and control signals of desired trajectory as the inputs of the tracking controller. The linear quadratic optimal control is used to realize full-state feedback control for trajectory tracking. A certain cruise missile is used for the tracking simulation and the result shows satisfactory performance, the control method is simple and suitable for engineering applications.


Sign in / Sign up

Export Citation Format

Share Document