scholarly journals Stability Analysis of Multi-Agent Tracking Systems with Quasi-Cyclic Switching Topologies

2020 ◽  
Vol 10 (24) ◽  
pp. 8889
Author(s):  
Dongyu Fan ◽  
Haikuo Shen ◽  
Lijing Dong

In this paper, the stability problem of a class of multi-agent tracking systems with quasi-cyclic switching topologies is investigated. The existing results of systems with switching topologies are usually achieved based on the assumption that the piecewise constant communication topologies are connected and the switchings are cyclic. The communication topologies are possible to be unconnected and it is difficult to guarantee the topologies switch circularly. The piecewise unconnected topology makes the interactive multi-agent tracking system to be an unstable subsystem over this time interval. In order to relax the assumption constraint, a quasi-cyclic method is proposed, which allows the topologies of multi-agent systems to switch in a less conservative way. Moreover, the stability of the tracking system with the existence of unstable subsystems is analyzed based on switched control theory. It is obtained that the convergence rate is affected by the maximum dwell time of unstable subsystems. Finally, a numerical example is provided to demonstrate the effectiveness of the theoretical results.

Author(s):  
Mohammad Maadani ◽  
Eric A Butcher

The stability of consensus in linear and nonlinear multi-agent systems with periodically switched communication topology is studied using Floquet theory. The proposed strategy is illustrated for the cases of consensus in linear single-integrator, higher-order integrator, and leader-follower consensus. In addition, the application of Floquet theory in analyzing special cases such as switched systems with joint connectivity, unstable subsystems, and nonlinear systems, including the use of feedback linearization and local linearization in the Kuramoto model, is also studied. By utilizing Floquet theory for multi-agent systems with periodically switched communication topologies, one can simultaneously evaluate the effects of each subsystem’s convergence rate and dwell time on overall behavior. Numerical simulation results are presented to demonstrate the efficacy of the proposed approach in stability analysis of all these cases.


2020 ◽  
Vol 53 (2) ◽  
pp. 4127-4131
Author(s):  
Jiafeng Yu ◽  
Peng Shi ◽  
Qinsheng Li ◽  
Wen Xing ◽  
Mohammed Chadli ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 941
Author(s):  
Tianhao Sun ◽  
Huiying Liu ◽  
Yongming Yao ◽  
Tianyu Li ◽  
Zhibo Cheng

In this paper, the time-varying formation tracking problem of the general linear multi-agent system is discussed. A distributed formation tracking protocol based on Riccati inequalities with adaptive coupling weights among the follower agents and the leader agent is designed for a leader-following multi-agent system under fixed and switching topologies. The formation configuration involved in this paper is expressed as a bounded piecewise continuously differentiable vector function. The follower agents will achieve the desired formation tracking trajectory of the leader. In traditional static protocols, the coupling weights depend on the communication topology and is a constant. However, in this paper, the coupling weights are updated by the state errors among the neighboring agents. Moreover, the stability analysis of the MAS under switching topology is presented, and proves that the followers also could achieve pre-specified time-varying formation, if the communication graph is jointly connected. Two numerical simulations indicate the capabilities of the algorithms.


2014 ◽  
Vol 87 (12) ◽  
pp. 2657-2668 ◽  
Author(s):  
Yongqiang Guan ◽  
Zhijian Ji ◽  
Lin Zhang ◽  
Long Wang

Sign in / Sign up

Export Citation Format

Share Document