scholarly journals Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components

2020 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Mohammad Faseehuddin ◽  
Norbert Herencsar ◽  
Musa Ali Albrni ◽  
Jahariah Sampe

A recently developed active building block, namely Voltage Differencing Extra X Current Conveyor (VD-EXCCII), is employed in the design of multi input single output (MISO), electronically tunable mixed-mode universal filter. The filter provides low pass (LP), high pass (HP), band pass (BP), band reject (BR) and all pass (AP) responses in current-mode (CM), voltage-mode (VM), trans-impedance-mode (TIM) and trans-admittance-mode (TAM). The filter employs a single VD-EXCCII, three resistors and two capacitors. Additionally, a CM single input multi output (SIMO) filter can be derived from the same circuit topology by only adding current output terminals. The attractive features of the filter include: (i) the ability to operate in all four modes, (ii) the tunability of the Q factor independent of pole frequency, (iii) the low output impedance for the VM filter, (iv) the high output impedance current output for CM and TAM filters and (v) no requirement for double/negative input signals (voltage/current) for response realization. The VD-EXCCII and its layout is designed and validated in Cadence Virtuoso using 0.18 µm pdk from Silterra Malaysia with a supply voltage of ±1.25 V. The operation of the filter is examined at the 8.0844 MHz characteristic frequency. A non-ideal parasitic and sensitivity analysis is also carried out to study the effect of process and components spread on the filter performance.

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Faseehuddin ◽  
Norbert Herencsar ◽  
Musa Ali Albrni ◽  
Sadia Shireen ◽  
Jahariah Sampe

Abstract Purpose This paper aims to achieve two main objectives. First, to introduce to the literature a new versatile active building block, namely, voltage differencing differential voltage current conveyor (VD-DVCC) for analog signal processing applications. Second, to design a novel electronically tunable mixed-mode universal filter. The designed filter provides low-pass, high-pass, band-pass, band-reject and all-pass responses in voltage-mode (VM), current-mode (CM), trans-impedance-mode (TIM) and trans-admittance-mode (TAM). Design/methodology/approach The proposed filter uses two VD-DVCCs, three resistors and two capacitors. All the capacitors used are grounded, which is advantageous from the monolithic integration point of view. The VD-DVCC is designed and validated in Cadence software using CMOS 0.18 µm process design kit from Silterra Malaysia at a supply voltage of ±1 V. Findings The proposed novel filter enjoys many attractive features including as follows: the ability to operate in all four modes, no requirement of capacitive matching, tunability of quality factor (Q) independent of pole frequency, availability of both inverting and non-inverting outputs for VM and TIM mode, high output impedance explicit current output for CM and TAM, no requirement for double/negative input signals (voltage/current) for response realization and low active and passive sensitivities. The filter is designed for a pole frequency of 5.305 MHz. The obtained results bear a close resemblance with the theoretical findings. Originality/value The proposed novel filter structure requires a minimum number of active and passive components and provides operation in all four operating modes. The filter will find application in structures of mixed-mode systems.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250064 ◽  
Author(s):  
NEETA PANDEY ◽  
SAJAL K. PAUL

The configuration with electronic tunable characteristics that can work in mixed mode may be useful from IC realization viewpoint and application adaptability. This paper proposes an electronically tunable mixed mode universal filter based on multiple output current controlled current conveyor (MOCCCII) and this single topology without any alteration can be used in all four modes i.e., voltage (VM), current (CM), transimpedance (TIM) and transadmittance (TAM). The architecture uses four MOCCCIIs and two grounded capacitors; and can realize universal filter functions — low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) for all four modes. Moreover the input impedance is high and output impedance is low for voltage signal and vice-versa for current signal, hence the proposed topology is suitable for cascading for all four modes. The workability of the proposed circuit has been verified via SPICE simulations using AMS 0.35 μm CMOS technology.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hua-Pin Chen

This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.


2011 ◽  
Vol 20 (04) ◽  
pp. 607-620 ◽  
Author(s):  
CHEN-NONG LEE

A fully cascadable (i.e., low/high input impedance for current/voltage input signals and high/low output impedance for current/voltage output signals) mixed-mode (input and output signals can be voltage or current) universal filter biquad by using three differential difference current conveyors (DDCCs), three grounded resistors, and two grounded capacitors is presented in this paper. The proposed biquad can realize the inverting, non-inverting, and differential types universal filtering responses (lowpass, highpass, bandpass, notch, and allpass) from the voltage and current output terminals without changing the filter topology. The proposed circuit is suitable for cascading in all the four possible modes (i.e., voltage, current, transresistance, and transconductance modes). Moreover, the proposed mixed-mode biquad still enjoys (i) using only grounded passive components, (ii) no need of extra inverting and non-inverting amplifiers for special input signals, and (iii) low active and passive sensitivities. This paper also shows how analytical synthesis can be used to produce the proposed mixed-mode filter circuit. H-Spice simulation results confirm the theory.


Sign in / Sign up

Export Citation Format

Share Document